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Scanning laser ophthalmoscopy 
retroillumination: applications and illusions
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Abstract 

Scanning laser ophthalmoscopes (SLOs) are used widely for reflectance, fluorescence or autofluorescence pho‑
tography and less commonly for retroillumination imaging. SLOs scan a visible light or near‑infrared radiation laser 
beam across the retina, collecting light from each retinal spot as it’s illuminated. An SLO’s clinical applications, image 
contrast and axial resolution are largely determined by an aperture overlying its photodetector. High contrast, reflec‑
tance images are produced using small diameter, centered apertures (confocal apertures) that collect retroreflections 
and reject side‑scattered veiling light returned from the fundus. Retroillumination images are acquired with annular 
on‑axis or laterally‑displaced off‑axis apertures that capture scattered light and reject the retroreflected light used for 
reflectance imaging. SLO axial resolution is roughly 300 μm, comparable to macular thickness, so SLOs cannot provide 
the depth‑resolved chorioretinal information obtainable with optical coherence tomography’s (OCT’s) 3 μm axial 
resolution. Retroillumination highlights and shades the boundaries of chorioretinal tissues and abnormalities, facilitat‑
ing detection of small drusen, subretinal drusenoid deposits and subthreshold laser lesions. It also facilitates screening 
for large‑area chorioretinal irregularities not readily identified with other en face retinal imaging modalities. Shaded 
boundaries create the perception of lesion elevation or depression, a characteristic of retroillumination but not 
reflectance SLO images. These illusions are not reliable representations of three‑dimensional chorioretinal anatomy 
and they differ from objective OCT en face topography. SLO retroillumination has been a useful but not indispensable 
retinal imaging modality for over 30 years. Continuing investigation is needed to determine its most appropriate clini‑
cal roles in multimodal retinal imaging.
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Background
Confocal scanning laser ophthalmoscopes (SLOs) 
are widely used to produce conventional reflectance 
monochromatic or multiwavelength fundus images. 
Some confocal SLOs have an additional retroillumi-
nation mode that can produce “pseudo-three-dimen-
sional” (pseudo3D) images [1–10]. In their widely-used 

reflectance-mode (direct-mode), SLOs record images 
from light reflected directly back (retroreflected) from 
chorioretinal structures. In their retroillumination-mode 
(indirect-mode), SLOs create images from light or infra-
red radiation that transilluminates chorioretinal struc-
tures as it returns indirectly from deeper choroidal and 
scleral layers.

Retroillumination highlights and shades the bounda-
ries of chorioretinal tissues and abnormalities, facilitating 
detection of small drusen, subretinal drusenoid deposits 
and subthreshold laser lesions [1–10]. It also facilitates 
identification of large-area chorioretinal irregularities 
not readily displayed in other en face retinal imaging 
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modalities [11–14]. Shaded boundaries create the per-
ception of elevation or depression in imaged structures 
[15–22], a characteristic of retroillumination but not 
standard reflectance SLO imaging. This perception is an 
illusion rather than an objective three-dimensional repre-
sentation of chorioretinal anatomy as provided by optical 
coherence tomography (OCT). We review and analyze 
the tissue-optics, clinical applications and limitations of 
SLO transillumination imaging.

Confocal SLOs
Clinical confocal SLOs sweep a 10–15 μm diameter laser 
spot across the fundus and collect light point-by-point 
from sequentially illuminated retinal sites [23–26]. The 
retina is exposed only to one small diameter, low irradi-
ance laser spot at a time so SLO imaging is comfortable 
and safe for patients and provides high lateral image res-
olution [23–26].

An SLO’s laser beam enters the retina roughly per-
pendicular to the plane of the retina [23–26]. Light 
absorption and light scattering including reflection and 
refraction attenuate the laser beam progressively as it 
descends to greater chorioretinal depths [27–29]. Light 
scattering is most prominent at tissue interfaces and sur-
faces where there are changes in refractive index, includ-
ing the sclera, retinal pigment epithelium (RPE) and 
internal limiting membrane (ILM) [30, 31]. Longer wave-
lengths (red and near-infrared) penetrate more deeply 
into the choroid than shorter wavelengths (blue) largely 
because optical radiation absorption by the primary cho-
rioretinal absorbers (melanin, hemoglobin and macular 
pigment) is lower at longer wavelengths [27, 32, 33].

One or more lasers are used to produce monochro-
matic or multicolor SLO images, respectively. Mono-
chromatic images are used in OCT systems to localize 
B-scans [34]. Multicolor images are created by combin-
ing monochromatic images [35, 36]. Multicolor confocal 
SLOs are useful alternatives for fundus cameras despite 
color imaging differences [37–40]. Some confocal SLOs 
can produce both (1) conventional reflectance images 
(reflectance-mode) as shown in Fig. 1A and (2) pseudo3D 
retroillumination-mode images as shown in Figs. 1B, 1C 
and 1D. We used a Mirante SLO (Nidek Co., Ltd., Gama-
gori, Japan) and a Cirrus 5000 HD-OCT (Carl Zeiss AG, 

Jena, Germany) to acquire the SLO and OCT images in 
this report, respectively.

Reflectance‑mode imaging
Confocal SLOs produce reflectance images (Figs. 1A and 
2A) from laser light scattered directly back from the fun-
dus (hence the term direct-mode for reflectance imag-
ing) [4, 25, 41]. The system is called confocal because 
the scanning laser beam and a small aperture centered 
in front of the SLO’s photodetector are both focused on 
the same retinal location [25]. The small confocal aper-
ture (1) restricts light collection to photons retroreflected 
from the illuminated retinal focal point, (2) blocks veiling 
glare that could be produced by photons scattered back 
to the photodetector from other retinal locations and (3) 
narrows depth of focus (increases axial resolution) [1, 25, 
29, 42]. Reducing depth of focus (optical slab thickness) 
also eliminates eyelash artifacts encountered with larger 
aperture ultra-widefield SLO systems [43].

Confocal apertures in SLO systems provide axial reso-
lutions of only ~ 300 μm, [34, 44–47] equivalent to total 
macular thickness (285 μm) [48]. Thus, even tomographic 
SLO systems could not offer the intraretinal detail avail-
able with OCT’s 3  μm axial resolution [49, 50]. Larger 
area apertures used for retroillumination-mode or ultra-
widefield SLO imaging have even lower axial resolutions 
(larger optical slab thickness) [1, 25, 42].

Retroillumination‑mode imaging
Confocal SLOs produce pseudo3D images by replac-
ing the small confocal aperture centered in front of the 
SLO’s photodetector (Fig.  2A, reflectance-mode) with a 
laterally-displaced (deviated) aperture (Fig. 2B) or a cen-
tered annular (ring-shaped) aperture (Fig. 2C) [1, 4, 5, 7, 
25, 51]. Laterally-displaced and annular apertures both 
(1) collect initially scattered light that returns indirectly 
to the detector (hence the term indirect-mode for retroil-
lumination imaging) and (2) reject light retroreflected 
directly back from the laser-illuminated retinal spot. In 
essence, retroillumination-mode imaging uses light that 
is rejected in reflectance-mode imaging and reflectance-
mode imaging uses light rejected in retroillumination-
mode imaging. Retroillumination images are created 
from light transilluminating chorioretinal structures 

Fig. 1 Reflectance and retroillumination scanning laser ophthalmoscope (SLO) as well as optical coherence tomography (OCT) images of the 
right retina of a 75‑year‑old female with neovascular age‑related macular degeneration, small subretinal hemorrhages, a large vascularized retinal 
pigment epithelial detachment and numerous drusen. A Reflectance multiwavelength SLO image. B Retroillumination SLO image taken with a 
deviated‑to‑the‑right (DR) confocal aperture. C Retroillumination SLO image taken with a deviated‑to‑the‑left (DL) aperture. D Retroillumination 
SLO image taken with a ring aperture (RA; annular aperture). Prominent lesion highlighting and border shading in B and C are absent with the 
Mirante ring aperture but present in published images with annular apertures using other SLO retroillumination systems. [1–4, 49, 54] E Segmented 
retinal pigment epithelium three‑dimensional OCT topography differing from retroillumination shading patterns in B and C (inset shows B‑scan 
along white arrow). F En face structural OCT image corresponding roughly to tissue planes of RPE topography in E and drusen in B and C 

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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(retroillumination) rather than reflected off their inner 
surfaces [29, 44]. The Mirante SLO is the only currently-
available commercial SLO system that provides retromil-
lumination-mode imaging. Past SLO transillumination 
studies have used earlier versions of this system, research 
SLOs and a commercial device that is no longer avail-
able [1–6, 25]. Retroillumination-mode Mirante imaging 
uses infrared laser radiation (790  nm) because it pen-
etrates more deeply into the choroid than visible (400 – 
700 nm) light [7, 27, 28, 32]. Chorioretinal structures are 
transilluminated by multiply-scattered photons return-
ing from the sclera and deep choroidal layers. Structures 
are rendered visible by reflection and refraction, much 
in the same way that an empty, transparent wine glass is 
visualized [25, 29]. Tissue irregularities and abnormali-
ties are visible as lesions or retinal areas shaded laterally 
from a light to a dark border. Tissue shading facilitates 
rapid detection of abnormalities that are more difficult 
to detect with other en face multimodal imaging meth-
odologies. Figures  1B and 1C are typical Mirante pseu-
do3D images taken with deviated-to-the-right (DR) and 
a deviated-to-the-left (DL) apertures, respectively. Fig-
ure 1D was taken during the same imaging session using 
the Mirante annular ring aperture (RA) that produces 

low contrast images without the tissue shading needed 
for pseudo3D effects.

Pseudo3D imaging
Lesion shading and pseudo3D effects are often ascribed 
to the asymmetric off-axis (deviated right or left) posi-
tioning of the proprietary retro-mode apertures of the 
Mirante and its predecessor F-10 SLO system [5–7, 9, 
52, 53]. Indeed, Mirante’s symmetric ring-aperture typi-
cally produces only low-contrast, non-pseudo3D images. 
Nonetheless, symmetric annular (ring) apertures in other 
commercial and experimental SLO systems create pseu-
do3D images with non-horizontal as well as horizontal 
shading gradients [1–4, 49, 54]. Contrast generated in 
retroillumination-mode imaging depends on aperture 
design, which the Mirante’s manufacturer does not dis-
close. In general, smaller area apertures produce higher 
image contrast and narrower depth of focus [25, 55, 56].

SLO retroillumination image shading has been com-
pared to lunar mountain shadowing [7, 9]. For example, 
it was reported that “In retromode imaging, the lateral 
incident light generates a shadow on the side opposite 
to the incident light source, resulting in an appearance 
of the retina that shows some resemblance to the lunar 

Fig. 2 Scanning laser ophthalmoscopy (SLO) confocal apertures for reflectance (direct‑mode) and retroillumination (indirect‑mode) SLO imaging. 
A In standard reflectance imaging, a centered confocal aperture limits light collection only to photons reflected “directly” back to the photodetector 
from the illuminated retinal spot, [25] thereby increasing retinal image contrast by blocking photons from other fundus locations that could cause 
veiling glare at the photodetector. [25, 64] B and C. In retroillumination imaging, an aperture deviated laterally (B) or an annular aperture (C) blocks 
retroreflected light and collects only photons scattered “indirectly” back to the SLO’s photodetector. Laterally‑deviated (B) or annular (C) apertures 
assure asymmetric or symmetric light collection in the retinal plane, respectively. In the Mirante system, asymmetric retroillumination imaging (B) 
transilluminates, highlights and shades borders of imaged chorioretinal structures whereas symmetric annular (ring) aperture light collection (C) 
provides low contrast transillumination images
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landscape” [9]. That comparison is problematic because 
an SLO’s laser beam is incident perpendicular not 
oblique to the retinal surface so there is no “side oppo-
site to the incident light source.” Moreover, the analogy 
is misleading clinically because accurate height informa-
tion can be extracted from lunar shadows but not from 
SLO retroillumination image border shading. Specifi-
cally, photogrammetry can determine building, tree and 
impact crater-wall height from solar shadows but that is 
not possible with retromode boundary shading because it 
is caused by multiple intraretinal light scattering events.

Pseudo3D is shape‑from‑shading
The shape-from-shading percept causes the depth per-
ceived in pseudo3D retroillumination-mode SLO images 
[57]. Shading and border structure help an observer iden-
tify a three-dimensional object’s shape but shape-from-
shading percepts can produce false illusions of depth in 
two-dimensional objects [15, 16, 22]. Visual perception 
integrates sensory data with sensory biases acquired 

from prior experiences (“priors”), including the expecta-
tion that the shading of natural objects is caused by a sin-
gle light source [15–22]. Shape-from-shading pseudo3D 
illusions have also been observed previously in scanning 
electron microscopy [58] and retinal differential interfer-
ence contrast microscopy images. [59, 60]

Figure  3 demonstrates how the visual system uses 
shape-from-shading to perceive elevation and depth in 
intrinsically two-dimensional images. Perceived elevation 
or indentation depends on an observer’s belief that a light 
source is located superior, inferior or to the left or right 
of these hexagonal [18] or circular [15] patterns. There 
is no objective three-dimensional depth information 
encoded in Fig. 3’s patterns, as is present in a stereopho-
tograph or hologram. Perceived depth in Fig.  3 is just a 
visual illusion. Apparent elevation or indentation can be 
reversed merely by rotating these objects 180 degrees in 
the horizonal plane or by an observer consciously chang-
ing the location of the light source believed to be causing 
the image shading.

Fig. 3 The visual system infers shape‑from‑shading of two‑dimensional hexagonal [18] or circular [15] objects largely biased on the assumption 
that they are three dimensional objects illuminated by a single light source. There is no objective three‑dimensional depth information in any 
of these two‑dimensional patterns which are perceived to be elevated or depressed depending on whether the observer believes that the light 
source illuminating them is located superior or inferior (A and B), or to the left or right (C and D) of the image. The depth perceived in them is a 
visual illusion. Elevation and indentation can be reversed by rotating any of these objects 180 degrees in the horizontal plane or by an observer 
consciously changing the location of the light source believed to be responsible for the boundary shading
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SLO pseudo3D and OCT
The exaggerated topographic irregularities perceived in 
Fig. 1B and C are illusory percepts that differ from OCT 
segmentation topography (Fig.  1E) and en face imag-
ing (Fig. 1F) taken during the same clinical visit. En face 
OCT allows users to select the depth and thickness of 
an imaged retinal slab. Conversely, retroillumination-
mode SLO’s full-thickness macula slab [44, 45, 47, 48] 
highlights only prominent chorioretinal disturbances, 
as shown in Figs. 1, 4 and 5. Border shading and accent-
ing can identify abnormalities not readily visualized with 
other en face imaging modalities but they cannot provide 

OCT’s quantitative estimates of chorioretinal depth. 
Once identified, however, SLO retroillumination irregu-
larities are readily evaluated with other forms of multi-
modal imaging.

Tomography and stereoscopy have been used in the 
past to obtain chorioretinal depth information from con-
focal SLO technology. (1) Scanning laser tomography 
developed for optic disc topography analysis was used for 
volumetric macular edema [34, 61, 62]. (2) Paired reflec-
tance SLO images taken at different angles were viewed 
stereoscopically to identify elevation in fluorescein angio-
graphic lesion [63]. Neither method approaches OCT’s 

Fig. 4 Reflectance and retroillumination scanning laser ophthalmoscope (SLO) as well as optical coherence tomography (OCT) images of the left 
retina of a 46‑year‑old man with Coats disease treated multiple times over a 15‑year period with laser photocoagulation and intravitreal anti‑VEGF 
therapy. A Reflectance multiwavelength SLO imaging shows a rhegmatogenous retinal detachment that extends centrally from a retinal hole in 
the superior‑temporal mid‑periphery. B Retroillumination SLO imaging with a deviated‑to‑the‑left (DL) aperture shows widespread posterior pole 
retinal crinkling and cystoid changes associated with the macula‑off detachment. C En face and associated B‑scan OCT images display central 
wrinkling less prominently than in B. D OCT B‑scan documenting a macula‑off retinal detachment and prominent associated cystoid abnormalities
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precision and clinical utility. Sequential confocal SLO 
and OCT imaging facilitates proper clinical interpreta-
tion of retroillumination SLO images.

Conclusions
Highlighting and shading of chorioretinal structure 
boundaries in SLO retroillumination images is useful for 
detecting small drusen, subretinal drusenoid deposits 
and subthreshold laser lesions. Additionally, it provides 
useful images of large-area chorioretinal irregularities 
not readily apparent with other en face retinal imaging 
modalities. Retroillumination SLO images are strikingly 
different from those produced by other en face imaging 

modalities. Their pseudo3D depth illusion caused by the 
shape-from-shading percept is perhaps their most distin-
guishing characteristic. It facilitates chorioretinal lesion 
screening and identification but does not provide objec-
tive depth information. Retroillumination-mode SLO 
imaging has been a useful but not indispensable retinal 
imaging modality for over 30 years. Continuing investiga-
tion is needed to determine its most appropriate clinical 
roles in multimodal retinal imaging.

Abbreviations
ILM: Internal limiting membrane; OCT: Optical coherence tomography; RPE: 
Etinal pigment epithelium; SLO: Scanning laser ophthalmoscope; DR: SLO 

Fig. 5 Reflectance and retroillumination scanning laser ophthalmoscope (SLO) as well as optical coherence tomography (OCT) images of the 
right retina of a 67‑year‑old male with myopic macular retinoschisis. A Reflectance multiwavelength SLO image shows a prominent myopic scleral 
crescent and reduced fundus pigmentation. B Retroillumination SLO image taken with a deviated‑to‑the‑right (DR) aperture shows widespread 
posterior pole wrinkling due to macular retinoschisis. C En face and associated B‑scan OCT images show less detailed and widespread cystic 
changes than in B. D OCT B‑scan documents central and temporal macular retinoschisis
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deviated‑to‑the‑right aperture; DL: SLO deviated‑to‑the‑left aperture; RA: SLO 
ring aperture.
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