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[2]. Deep learning (DL) is a class of machine learning 
techniques dedicated towards developing artificial neu-
ral networks with multiple levels of abstraction in which 
task-specific features are not prespecified by human 
engineers, but they are learned directly from data using 
a general-purpose learning procedure [3]. The integra-
tion of AI into the field of medicine is not a recent phe-
nomenon. The MYCIN system was developed at Stanford 
University in the 1970s to assist in diagnosing and treat-
ing bacterial infections [4]. From there, the amount of 
automated algorithms multiplied and more advanced AI-
based systems were developed including risk prediction 
scales that are currently used in clinical practice [5–7]. 
AI has emerged as a transformative technology across 
various fields, and its applications in ophthalmology have 
gained significant attention due to the availability of large 

Introduction
Artificial intelligence (AI) spans a wide range of tech-
niques within computer science, executing tasks that 
were traditionally performed by humans [1]. Machine 
learning (ML) is a branch of AI firstly described by 
Arthur Samuel in 1959 as the combination of computa-
tional science and mathematical concepts used to per-
form specific tasks without being explicitly programmed 
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digital datasets from retinal imaging. The exponential 
growth of interest from the scientific community can be 
easily identified when analysing the raising numbers of 
publications in recent years. Using “artificial intelligence” 
and “ophthalmology” as keywords in PubMed there are 
3187 publications from 1900 to 2023, 2820 (88%) of them 
were published in the last 5 years.

Due to the large potential of multi-modal imag-
ing utilized for diagnostics and monitoring of vision-
threatening conditions in clinical routine, the retina 
emerged as the most promising field for application of 
AI. Age-related macular degeneration (AMD) is one of 
the leading causes of severe visual loss worldwide and 
is described as a multifactorial interaction of metabolic, 
functional, genetic, and environmental factors [8, 9]. 
Late-stage AMD is characterized by vision-impairing 
lesions in the macula such as geographic atrophy (GA) 
in non-exudative AMD or macular neovascularization 
(MNV) in neovascular AMD (nAMD) [10]. Over the past 
20 years, there were significant advances in diagnostic 
tools, ultimately spectral-domain (SD) optical coherence 
tomography (OCT) has become the gold standard imag-
ing modality in AMD [11, 12]. 10–15% of all AMD cases 
advance to nAMD and often suffer from fast progressing 
devastating visual impairment. Thus, the introduction of 
intravitreal vascular endothelial growth factor (VEGF) 
inhibition in 2006 for treating nAMD was a landmark 
event in disease management [11, 12]. However, the half-
lives of these biological drugs are short and in the con-
text of chronic treatment over lifetime, may represent 
an important burden to the patient and to the health 
care system [13, 14]. Clinical trials such as PULSAR, 
TENAYA and LUCERNE analyzed treatment efficacy of 
more extended regimens in order to address this problem 
[15, 16]. Furthermore, the first intravitreal complement 
system inhibitors were approved by the US Food and 
Drug Administration (FDA) in 2023 to treat patients with 
GA, [17] representing an additional burden on already 
stressed health care systems.

Fortunately, efficient AI algorithms relying on high 
resolution imaging have the potential to reduce time 
effort and improve quality standards in evaluating disease 
activity in clinical practice. OCT images are character-
ized by their high-resolution depiction of retinal struc-
tures, containing many millions of pixels in each volume, 
providing the most critical parameters for guiding treat-
ment decisions in AMD [18]. This review paper aims to 
provide an overview of the current state of AI in OCT 
in AMD focusing on its applications, challenges, and 
prospects.

AI in retinal imaging
Before the advent of AI-based tools, management of 
retinal pathologies relied mostly on dichotomous param-
eters, meaning subjective assessment of presence or 
absence of specific biomarkers. A binary approach often 
underestimates biomarker dynamics and the intricate 
nature of all retinal conditions, including AMD. The 
multi-modal approaches lead to an enormous amount 
of information for each patient at each visit. However, 
traditional methods struggle to capture the subtle varia-
tions in pathology, such as atrophy progression, fluid 
volume and fluctuation. Moreover, novel biomarkers of 
relevance are subclinical in nature such as photorecep-
tor layer loss consistent with the ellipsoid layer attenua-
tion. Hence, advanced AI detection tools are needed to 
reliably inform the clinician about the state of the disease 
in GA. Nevertheless, the ageing population causes a con-
tinuous growth in the prevalence of AMD worldwide, 
demanding novel strategies capable of screening as well 
as precisely following disease progression in a faster and 
reliable manner. AI enables a prompt analysis by quan-
tifying various parameters, that are usually challenging 
to assess comprehensively by humans in a busy clinical 
practice [19, 20]. 

Early detection is paramount in managing retinal dis-
eases as it allows for timely intervention in case of con-
version to sight-threatening stages of the disease. For 
example, the presence of large confluent drusen, sub-
retinal drusenoid deposits, refractile deposits, large and 
central pigment epithelial detachment (PED) and vitel-
liform material on intermediate AMD were described 
as phenotype precursors for GA development [21, 22]. 
Multimodal imaging is a praised gold standard to identify 
retinal biomarkers. Historically, color fundus photogra-
phy (CFP) played an important role in screening due to 
its non-invasive and fast acquisition and broader avail-
ability of devices, including the recent emergence of por-
table handheld devices or applications on smartphones. 
Due to lower complexity of this imaging modality poten-
tially less intricate algorithms are able to automatically 
analyze the images [23]. AI-based technology applied on 
CFP enables the detection of biomarkers such as drusen, 
haemorrhages and pigment abnormalities and may clas-
sify the eye following a binary (referable or non-referable) 
or multi-class scale (no AMD, early, intermediate, or 
advanced AMD) [24, 25]. A previous study showed sensi-
tivity and specificity of AI-based screening for intermedi-
ate and advanced AMD using CFP achieving 93.2% and 
88.7%, respectively [26]. However, limitations including 
real-world applicability and generalizability as well as 
demonstrating the long-term benefits on functional out-
comes still need further prospective studies. So far, CFP 
has not been able to provide other than descriptive epi-
phenomena of AMD.
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Fundus autofluorescence (FAF) emerged as a non-
invasive imaging modality able to detect light emission 
from fluorophores such as lipofuscin, supposedly present 
within the outer segment of photoreceptors and the RPE. 
This property allowed FAF to further distinguish retinal 
lesions such as pseudo-drusen and atrophic regions [27]. 
Usually, blue-light FAF (488  nm excitation wavelength) 
is most commonly used for imaging AMD, however lon-
ger wavelengths, such as green or near infrared, have 
shown advantages in detecting subtle changes. Recently, 
AI-based algorithms applied on FAF imaging were devel-
oped with the potential of automated segment macu-
lar lesions in GA [28, 29]. However, FAF devices are not 
readily available in clinical practices. Furthermore, the 
perilesional patterns such as diffusely or focal granular, 
branching or reticular lipofuscin deposits can be subjec-
tively interpreted and do not reliably correlate with GA 
lesion progression as neurosensory structures such as 
photoreceptors are not depicted by FAF.

The amount of information increases by millions due to 
the pixel-wise extraction when using AI on OCT images 
[30, 31]. OCT is a non-invasive real-time high-resolution 
imaging tool of the retina, which, combined with robust 
algorithms, has the potential to diagnose retinal disease 
and predict advanced stages, treatment response and 
visual outcomes in AMD [32]. 

De Faw et al. from the Google group presented the 
use of automated algorithms in the triage of retinal dis-
eases at Moorfields Eye hospital, determining therapeutic 
referral need of a patient’s condition. One of the algo-
rithms presented referral recommendations reaching or 
exceeding the performance of eye care professionals for 
a range of sight-threatening retinal diseases [33]. The use 
of this technology on screening and referral pathways 
may open a cost-effective solution and could increase 
accessibility in areas of imbalance between caregivers 
and patients.

Since safety is a key issue in the AI field, the perfor-
mance of human specialists and algorithms are compared 

to test and validate automated algorithms. For detection 
of retinal fluid in AMD patients, an AI-based algorithm 
showed higher accuracy than eye care professionals, [34] 
reinforcing the power of these automated measurement 
tools.

Post hoc analyses offer a good opportunity to validate 
and refine AI algorithms. However, the utilization of 
large-scale datasets, such as the Intelligent Research in 
Sight (IRIS) Registry, may be instrumental in prospec-
tively evaluating AI systems in real-world scenarios [35]. 
The integration of AI with big real-world datasets not 
only facilitates the validation of AI technologies, but also 
contributes to the evolution of precision medicine by tai-
loring interventions based on the complexities observed 
in diverse patient populations. Nevertheless, in IRIS, 
image collection has not yet been integrated into AI and 
the variability of multiple devices and scan patterns used 
will present an important obstacle in performing a uni-
form image analysis.

AI techniques in OCT analysis
AI-based OCT analysis typically rely on different DL 
methods including convolutional neural networks 
(CNNs) and generative adversarial networks (GANs). 
CNNs in particular have been at the forefront of AI-
driven image analysis in ophthalmology and in retina 
[36]. They exploit the fact that adjacent pixel values in the 
image are correlated and they excel at extracting hierar-
chical features from images, making them particularly 
effective for the vast amount of high-resolution image 
data present on OCT. In the context of AMD, CNNs can 
automatically learn and detect relevant retinal features 
to perform diverse tasks, such as layer segmentation and 
fluid quantification (Fig.  1) [37]. For example, Mishra 
et al. used CNNs to develop a shortest-path algorithm 
of 11 retinal layers, drusen and subretinal drusenoid 
deposits in SD-OCT based on probability maps (Fig.  2) 
[38]. Transfer learning, which involves fine-tuning pre-
trained CNN models on OCT data, has proven beneficial 

Fig. 1  Convolutional neural network with an encoder-decoder architecture to identify intraretinal fluid (green) and subretinal fluid (blue). The retinal tissue 
is marked in red. Reproduced with permission from Schlegl et al., 2022 [37]. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article)
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for small datasets by leveraging knowledge gained from 
larger related datasets.

Layer segmentation is a critical step in extracting ana-
tomical structures from OCT images. AI-powered seg-
mentation algorithms employ techniques like U-Net, 
a convolutional network architecture tailored for seg-
mentation tasks. Indeed, a precise segmentation aids in 
identifying disease-specific features such as photorecep-
tor integrity, defined as continued segmentation of the 
area between the top of the ellipsoid zone and the outer 
boundary of the interdigitation zone, and RPE layer dis-
ruption, enabling more accurate diagnosis and disease 
progression assessment [39–41]. 

Furthermore, GAN is a deep learning method that 
consist of two neural networks, a generator, and a dis-
criminator, automatically working in tandem to produce 
high-quality synthetic data. In OCT analysis for AMD, 
GANs can aid in data augmentation for addressing the 
challenge of imbalanced datasets and for training mod-
els to detect abnormalities on OCT without the need for 
manual labelling [42]. GAN-generated images can also 
be applied for super-resolution and denoising in OCT 
images [43]. 

The foundation model’s ability to leverage vast datas-
ets for nuanced pattern recognition can play an impor-
tant role in the early detection of retinal diseases [44]. 
A self-supervised learning-based foundation model was 
recently described as capable of training on unlabelled 
retinal images and showing satisfactory performance in 
detecting ocular disease and predicting systemic disease 

based on retinal imaging. Furthermore, it holds promise 
for democratizing access to medical AI and advancing 
clinical implementation by providing a publicly available 
resource for further research and applications [44]. 

AI in OCT in intermediate AMD
Patients with early and intermediate AMD frequently 
show few to no symptoms. The speed of progression to 
advanced stages varies widely, hence it is of great impor-
tance to accurately identify key biomarkers and to pre-
dict the patient’s conversion, as vision loss occurs only 
in advanced stages with foveal destruction. Since early 
interventions with intravitreal therapies are more ben-
eficial in preserving visual function of patients, there is 
a strong drive towards early detection of converters [45]. 
Multiple prognostic markers have been identified preced-
ing conversion to advanced AMD including demograph-
ics, genotype and structural features. For example, the 
location, volume and size of drusen indicated the pro-
gression to nAMD, whereas outer retinal thinning led to 
GA [46]. However, the features are confluent suggesting a 
common mechanism among the different types of AMD.

Subretinal drusenoid deposits (SDD) have been shown 
to be a significant biomarker, associated with a higher 
risk for developing type 3 MNV, outer retinal atrophy 
and GA [47, 48]. Therefore, it is desirable to automatically 
quantify them and implement in predictive progression 
models. However, segmentation of SDD can be challeng-
ing. A previous study showed an overall substantial inter-
reader agreement regarding the presence of SDD, but a 

Fig. 2  Deep learning utilizing a short-path approach for segmenting retinal layers. Orange boxes represent training steps and gray boxes represent evalu-
ation steps. Reproduced with permission from Mishra et al., 2020 [38]
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slight and moderate inter-reader agreement for presence 
of type 1 and type 2 SDD on selected OCT B-scans [49]. 
Furthermore, a larger difference between human graders 
and AI was reported for SDD when compared to drusen 
[38]. With targeted efforts in this field, automated SDD 
detection is advancing.

The ongoing PINNACLE trial consisting of multimodal 
imaging including over 400.000 OCT images from AMD 
patients with a follow-up of up to 3 years is conducted 
to characterize and validate biomarkers for conversion 
and, as secondary outcome, develop predictive risk mod-
els [50]. Recently, a DL classifier was developed using 
data from the PINNACLE study identifying normal eyes 
and the onset of early and intermediate AMD, GA and 
nAMD automatically. It consists of a two-stage CNN cat-
egorizing disease stages with an AUC of 0.94 in a real-
world test set [51]. Based on multiple risk factors for 
conversion identified, ML algorithms were developed to 
predict nAMD or GA conversion in fellow eyes of nAMD 
patients [52, 53]. Using the HARBOR trial dataset, an 
algorithm showed that converters to nAMD present dif-
ferent patterns than GA converters such as thickening 
of the RPE drusen complex, increased drusen area, HRF 
and outer nuclear layer (ONL) thickening in areas with 
hyperreflective foci. GA-converters on the other hand 
show global ONL thinning, RPE and inner segment/
outer segment junction (IS/OS) thinning and hyperre-
flective foci in the ONL. This predictive model achieved 
an AUC of 0.68 with 0.46 specificity and 0.80 sensitivity 
for nAMD and a higher AUC of 0.80 with 0.69 specificity 
and 0.80 sensitivity for GA prediction [53]. 

AI in OCT in nAMD
Automated tools for guiding anti-VEGF therapy in 
nAMD is not new. Central subfield thickness (CST) is an 
automated measurement tool, widely used as endpoint 
and guide for treatment decisions in many clinical trials 
[14, 54]. However, this parameter does not provide any 
detailed information about location and extension of dis-
ease-specific activity and is often not adequately aligned 
in diseased macula. Furthermore, it does not distinguish 
between neurosensorial layers, retinal fluid compartment 
and pigment epithelial detachments. Previous studies 
have shown a weak correlation between CST and visual 
acuity as well as between CST and retinal fluid volumes 
[55, 56]. Moreover, in recent clinical studies compar-
ing durability of the novel substances CRT values were 
used in various and irreproducible combinations mak-
ing an objective comparison of the novel therapeutics 
impossible.

The most recent AI-based algorithms developed for 
OCT involve biomarkers such as fluid volume quanti-
fication in each compartment (intra- and subretinal), 
fibrovascular PED, subretinal hyperreflective material 

(SRHM) and hyperreflective foci [10, 19]. Despite the 
importance of all high-order biomarkers on disease clas-
sification and progression, [57, 58] post hoc analysis from 
TREND study and from the Fight Retinal Blindness! data-
set using DL and ML showed that retinal fluid is still the 
most important anatomical biomarker for predicting dis-
ease activity, treatment demand and visual outcomes in 
nAMD [59, 60]. Indeed, recent analysis showed that not 
only the location of fluid is important for disease pro-
gression, however the dynamic fluctuation of each reti-
nal fluid has a high impact on the outomes [61]. Volumes 
and changes in volumes of retinal fluid have a substan-
tial impact on vision outcome. Higher IRF and PED were 
associated with worse visual outcomes, despite IRF being 
the fluid type with faster response to anti-VEGF therapy. 
SRF showed slower resolution, intuitively leading to an 
increased number of injections during the first year in 
a pro-re-nata regimen, however no significant correla-
tion with worse functional outcomes was found presum-
ably due to the predominant location of SRF outside of 
the central 1 mm of the fovea [59, 60, 62]. This highlights 
the notion that traditional treatment patterns have to 
undergo a reality check by a rigorous structure/function 
correlation. In long-term follow up, retinal fluid volumes 
and visual acuity are not generally, but individually cor-
related, indicating a concomitant neurodegenerative 
process [63]. Furthermore, despite “regular” treatment, 
most of nAMD patients are prone to develop subretinal 
fibrosis and macular atrophy with time [64, 65]. Higher 
amounts of fluid, particularly volume fluctuations, the 
presence of subretinal hyperreflective material and MNV 
type revealed to be correlated with atrophy or fibrosis 
development [61, 66–68]. Photoreceptor loss and RPE 
loss were strongly correlated with development of macu-
lar atrophy [69]. Thus, to better understand late anatomi-
cal outcomes, early changes on the photoreceptor layers 
in association with fluid behaviour may be further inves-
tigated through precise in vivo measurments [70]. Fur-
thermore, there is still an open question if SRF, overall or 
dependent on its dynamics, might be protective against 
macula atrophy development in patients with nAMD 
[71]. 

OCT angiography (OCTA) represents a powerful non-
invasive technology able to analyse choroidal and reti-
nal vessels, including MNV characteristics in nAMD. A 
previous study analysing MNV characteristics using 
OCTA found a correlation between higher vessel tortu-
osity within the MNV area and worse visual outcomes 
as well as stronger trend to atrophic changes, despite 
lower exudation at baseline [72]. In the other hand, Sul-
zbacher et al. reported no significant correlation between 
OCTA patterns such as vessels density of the neovascu-
lar lesion and BCVA [73]. An automated and precise tool 
applied to choroidal flow, vessel density and other MNV 
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characteristics may open new perspectives on vascular 
biomarkers.

Home monitoring OCT
Home monitoring OCT has emerged as an innovative 
technological paradigm aimed at optimizing the surveil-
lance of individuals affected by chronic sight-threatening 
pathologies, notably those requiring recurrent monitor-
ing and fast intervention, such as nAMD [74]. Home 
screening tests for nAMD are not a novelty. Amsler grid 
and preferential hyperacuity perimetry has been previ-
ously proposed to detect metamorphopsia as an early 
sign of choroidal neovascularization in AMD patients 
[74, 75]. The current development of an AI-based fluid 
monitoring algorithm implemented on a home OCT 
device (The Notal Vision Home OCT system) showed 
promising results with feasible self-scan rates. This tech-
nology is not yet available on the market, however it 
showed feasibility in early detection of biomarkers and 
advanced stages of AMD such as neovascularization [76]. 
Home monitoring OCT may bring advantages includ-
ing a decreased number of visits to the eye hospital and 
close monitoring of disease progression. However, there 
are challenges such as quality of data acquisition, safety 
of data transfer and integration of the acquired data into 
a local healthcare system. A previous economic evalua-
tion based on a simulation showed that a home visual-
field monitoring system for early CNV detection was 
cost-effective compared with scheduled examinations 
alone on patients at risk of developing nAMD [77]. Fur-
ther cost-effective simulations should be conducted for 
new devices. Additionally, the concomitant escalation in 
data volume stemming from increased imaging moni-
toring frequencies is a major issue. Also, compliance has 
always prevented reliable and long-term self-monitoring 
in chronic disease. Shared-care as already implemented 
in Great Britain with community-based monitoring 
“around the corner” by fully equipped opticians may be 
a more realistic model, particularly if supported by stan-
dardized AI-based detection tools.

AI in geographic atrophy
GA is characterized by degeneration of the photorecep-
tors and RPE, accompanied by degeneration of the sub-
jacent choriocapillaris, leading to irreversible vision loss 
[78, 79]. The literature mentions that GA affects around 
5  million people worldwide, [80] however this number 
might be underestimating the total number of patients, 
as it primarily accounts for fovea-centered lesions. Con-
sequently, it overlooks a significant spectrum of the dis-
ease in earlier stages all arising from the perifoveal area 
and being non-symptomatic. The diagnosis of GA was 
initially based on fundus photography [81]. Blue-light 
fundus autofluorescence (FAF) emerged as a valuable 

tool in diagnosing GA, since the degeneration of the 
RPE results in a clearly demarcated area of hypo-auto-
fluorescence. Near-infrared reflectance (NIR) imag-
ing, which has a longer wavelength, has also provided a 
benefit for visualization of GA lesions with lower inter-
ference caused by the macular luteal pigments [28, 82]. 
Therefore, the number, location and size of GA lesions as 
well as other disease-specific biomarkers could be mea-
sured easier with FAF [83]. Therefore, FDA and European 
Medicines Agencies accepted FAF-based measurements 
of changes in GA area as anatomical endpoint in the 
early clinical trials [84, 85]. Availability of high-resolution 
three-dimensional OCT imaging together with AI tools 
detecting the pathognomonic neurosensory, yet subclini-
cal features not accessible to human specialists by retinal 
images alone, but accurately visualized on OCT-based AI 
analysis represent the novel horizon of precision medi-
cine [28, 29, 86]. 

In clinical practice, OCT devices are widely available 
and are the gold standard in monitoring AMD. SD-OCT 
provides a more detailed information of the condition 
of the outer retinal layers, including the degeneration 
of photoreceptors in the lesions’ active junctional zone 
[47, 87]. Therefore, OCT might provide more insights 
into progression patterns due to the detailed visualiza-
tion of photoreceptor alteration. In a post-hoc analysis 
of the FILLY phase 2 clinical trial data set, findings from 
OCT imaging were consistent with FAF results measur-
ing the RPE defect. Both imaging modalities could prove 
the superiority of treated patients regarding RPE loss, 
but only three-dimensional assessment in OCT was able 
to reveal early superior maintenance of photoreceptor 
integrity with complement inhibition [88]. To precisely 
measure these parameters, a DL algorithm segmenting 
A-scan regions on SD-OCT was clinically validated and 
tested using study datasets as well as real world images 
(Fig.  3) [88]. The GA monitor computes topographic 
maps and measurements of RPE and photoreceptor 
integrity loss based on 3D imaging and is accessible by a 
simple upload of a standard OCT image to the Heidel-
berg engineering Spectralis AppWay [41]. In the con-
secutive phase 3 studies, Oaks and Derby, high statistical 
significance with p < 0.0001 was provided demonstrating 
that disease activity, i.e. GA growth correlated with the 
ratio between photoreceptor integrity loss and RPE loss, 
i.e. the PR/RPE loss ratio. The PR/RPE ratio also strongly 
determined the level of therapeutic benefit in the study 
results qualifying as a most reliable clinical parameter for 
treatment indications in GA (Fig. 4) [89, 90]. 

As the question remains unclear which patients should 
be treated, clinicians search for predictors of disease 
activity. For this purpose, a validated algorithm was used 
to predict topographic progression of GA by analysing 
RPE loss, photoreceptor integrity and hyperreflective foci 
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(HRF) [53]. Higher progression rates of GA were associ-
ated with atrophies closer to the fovea, HRF at the junc-
tional zone and thinner photoreceptor layers. These tools 
could help in identifying progression patterns, which 
would support clinicians to better identify patients, who 
would benefit from a potentially life-long treatment.

AI-based OCT tools in clinical trials
Despite the previously mentioned potential of using AI 
in clinical practice, another evident application pertains 
to the recruitment processes in clinical trials for AMD. 
Developing a new drug presents a financial challenge, 
attributable to regulatory requirements, extensive data 
collection and usually prolonged timelines associated 
with clinical trials. The use of ML and DL models exhibit 
substantial promise in accelerating the enrolment of par-
ticipants who are more likely to present faster progression 
to advanced stages of the disease, may present stronger 
response to specific novel therapies, and demonstrate a 
reduced likelihood of premature withdrawal from a trial 
[91]. An efficient selection process can increase sample 
size and consequently the detection of statistically signifi-
cant differences between groups on a trial [53]. On the 
other hand, selecting patients with higher disease activity 
and possibly stronger response to a specific therapy could 
improve patient enrolment in clinical trials. Additionally, 
automated algorithms can assess morphological end-
points in a precise and reliable manner, most importantly 
in real-time for all clinical sites providing highest image 
quality as the images immediately undergo analysis 
control. Especially in GA, functional endpoints such as 
best-corrected visual acuity are frequently insufficient to 

describe all aspects of visual impairment [83]. Structural 
biomarkers are less influenced by patient compliance 
than functional endpoints. Clinical trials have been per-
formed to study how disease activity assessment is influ-
enced and supported by AI-based enrichment of OCT 
images. RAZORBILL (NCT04662944), Notal Vision 
Home OCT study (NCT04642183), and a prospective 
study using fluid monitoring (NCT05093374) are exam-
ples of ongoing trials using automated segmentation of 
retinal fluid volumes. A clinical trial using a DL algorithm 
on OCTA (NCT05969418) to analyze neovascular mem-
brane vessel characteristics has started and as previously 
mentioned in this review the PINNACLE clinical trial 
cohort is being conducted for AI-based segmentation 
of early atrophy and fluid-related biomarkers on OCT 
(NCT04269304). Less intricate algorithms based on CFP 
segmentation are also under investigation for screening 
purposes such as iPredict (NCT04863391) and VeriSee 
AMD (NCT05593913).

The limitations of AI-based algorithms
The implementation of AI-based algorithms in AMD 
diagnosis and treatment comes with the known limita-
tions of innovative approaches. The demand of large 
datasets for training AI models may introduce biases, as 
certain demographics or variations in disease character-
istics may be underrepresented. The ethical consider-
ations surrounding patient privacy, data security, and the 
interpretability of AI decisions also raise concerns and 
must comply with different regulations in each nation. 
Another aspect to consider are adequate reimbursement 
models. Furthermore, the diversity of devices, launch of 

Fig. 3  Geographic atrophy (GA) lesion from two patients at baseline (BSL) (upper row) and at month 12 (lower row) from OAKS clinical trial dataset auto-
mated segmented with the AI-based GA monitor. Retinal pigment epithelium (RPE) loss (blue) and photoreceptor integrity loss (green) are shown as en 
face visualizations (left) and example B-scans (right). RPE loss extends into regions of preexisting PR loss
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new imaging machines, and variations in imaging proto-
cols across different clinical settings can hinder the devel-
opment of universally applicable algorithms. While AI 
in retinal images holds promise, addressing these limita-
tions is crucial to realizing its full potential in enhancing 
diagnostic accuracy and ensure its effective and ethi-
cal integration into clinical practice. The overwhelming 
introduction of OCT imaging hand-in-hand with anti-
VEGF therapy using OCT hardware as a “fluid meter” 
clearly serves as a potent role model for the introduction 

of OCT-based AI analysis in times of GA management, 
an even bigger responsibility, 20 years later.

Conclusion
AI-based models can strongly benefit clinical practice 
and research in AMD. Multimodal imaging, the con-
ventional standard for diagnosing patients with AMD, is 
being replaced by OCT imaging. Furthermore, DL and 
ML algorithms showed the potential of reliably quan-
tifying biomarkers, predicting disease progression and 

Fig. 4  Example of 2 lesions with geographic atrophy and different PR/RPE loss ratios. PR loss is marked in green and RPE loss in red. (a) shows a lesion 
with a small PR/RPE loss ratio and (b) a lesion with a large PR/RPE loss ratio at baseline. Letters (c) and (d) show the respective lesions at month 12 with 
significantly faster growth in the lesion with the higher ratio (d). Reproduced with permission from Schmidt-Erfurth et al., 2023 [90]
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assisting treatment decisions. The next steps have to be 
taken for bringing AI from clinical research to its clearly 
needed application in everyday clinical practice, however, 
ongoing advances in the field are steadily narrowing this 
gap.
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