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Abstract
Purpose In supervised Machine Learning algorithms, labels and reports are important in model development. To 
provide a normality assessment, the OCT has an in-built normative database that provides a color base scale from 
the measurement database comparison. This article aims to evaluate and compare normative databases of different 
OCT machines, analyzing patient demographic, contrast inclusion and exclusion criteria, diversity index, and statistical 
approach to assess their fairness and generalizability.

Methods Data were retrieved from Cirrus, Avanti, Spectralis, and Triton’s FDA-approval and equipment manual. The 
following variables were compared: number of eyes and patients, inclusion and exclusion criteria, statistical approach, 
sex, race and ethnicity, age, participant country, and diversity index.

Results Avanti OCT has the largest normative database (640 eyes). In every database, the inclusion and exclusion 
criteria were similar, including adult patients and excluding pathological eyes. Spectralis has the largest White (79.7%) 
proportionately representation, Cirrus has the largest Asian (24%), and Triton has the largest Black (22%) patient 
representation. In all databases, the statistical analysis applied was Regression models. The sex diversity index is similar 
in all datasets, and comparable to the ten most populous contries. Avanti dataset has the highest diversity index in 
terms of race, followed by Cirrus, Triton, and Spectralis.

Conclusion In all analyzed databases, the data framework is static, with limited upgrade options and lacking 
normative databases for new modules. As a result, caution in OCT normality interpretation is warranted. To address 
these limitations, there is a need for more diverse, representative, and open-access datasets that take into account 
patient demographics, especially considering the development of supervised Machine Learning algorithms in 
healthcare.
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Introduction
In Artificial Intelligence (AI) and Machine Learn-
ing (ML), computational models predict results from 
connections in abstractions of inputted data [1]. In 
supervised ML, label records are used during model 
development, but a reliable labeling process can be a 
laborious and expensive process, often taking advantage 
of reports in the dataset development process [2].

With the proliferation of digital devices in healthcare, 
an enormous volume of data is accrual [3]. However, 
there is a risk of bias when the data, especially that used 
to determine ‘normal’ parameters, is not representative of 
the heterogeneous populations for whom the technology 
is used, with unfair and harmful algorithms outcomes 
against underrepresented populations [4–6].

Optical Coherence Tomography (OCT) is a biomedical 
non-invasive imaging exam that generates low-coherence 
interferometry to generate three-dimensional images of 
biological tissues [7]. The OCT makes inferences on tis-
sue characteristics by interpreting reflections of a light 
beam at different tissue depths and has evolved from a 
time domain to frequency domain technology, which has 
a more sensitive image capacity, faster-capturing speed, 
better image depth, and enhanced image availability [7].

The OCT scanner is now widely implemented through-
out healthcare, such as ophthalmology, cardiology, der-
matology, and dentistry [8–12]. In ophthalmology, the 
OCT is routinely used to aid the diagnosis of various 
conditions, including retinal diseases[13], glaucoma [14], 
and cornea diseases[15]. OCT scans are widely imple-
mented in helping the decision-making for macular dis-
eases, such as anti-vascular treatment for macular edema 
in central retina vein occlusion [16], age-related macular 
degeneration [17], and diabetic macular edema [18].

The color-based scale utilized in OCT analysis is estab-
lished based on the percentiles of normal distributions 
within the normative database for each A-scan location 
among same-age individuals. The scale is divided into 
four color-coded zones: the white area is above 95% of 
the distribution, the green area is between 5% and 95%, 
the yellow between 1% and 5%, and the red below 1%. 
However, the normality report is defined based on the 
percentage of the thickest or thinner measurements 
across the color-based scale.

Given the relatively limited demographic represen-
tativeness of data used to form ‘normal’ parameters for 
each machine’s database, interpretation of the degree of 
disease severity (and how much it differs from ‘normal’ 
parameters) can be difficult for clinicians and input bias 
in AI and ML models [19, 20]. Moreover, the lack of nor-
mative data for the under-18 population excludes pediat-
ric patients from the analysis [21].

Despite its widespread use in ophthalmic practice, 
OCT normative databases applied in OCT analysis are 

often a limited, static, private, and lacking assessment 
of generalizability and fairness – especially when used 
for underrepresented populations. Among the different 
ophthalmological subspecialties, mainly glaucoma and 
retina, rely on normative data analysis in clinical practice.

This article aims to evaluate and compare normative 
databases of different OCT machines, analyzing patient 
demographic, contrast inclusion and exclusion criteria, 
diversity index, and statistical approach to assess their 
fairness and generalizability. Our study compared the 
OCT’s normative databases diversity with China, the 
United States of America, and Brazil’s demographics.

Materials and methods
This study was conducted exclusively with publicly avail-
able data, in accordance with the Helsinki Declaration. 
We analyzed the layer measurement data extracted from 
each OCT segmentation model. These segmentation 
algorithms have not been evaluated in this study.

Datasource
For the current study, we analyzed data retrieved from 
the United States (US) Food and Drug Administration 
(FDA) medical devices database and the OCT equipment 
user manual of the following contemporary OCT equip-
ment: Carl Zeiss Cirrus, RTVue Avanti, Heidelberg Spec-
tralis, and Topcon Triton.

Variables
We extracted variables from the database included: (1) 
the number of included eyes and patients, (2) inclusion 
and exclusion criteria, and (3) the statistical approach. 
The demographic variables we document here are (1) sex, 
(2) race and ethnicity, (3) participants’ age, and (4) popu-
lation country. Race and ethnicity variables were inter-
preted according to the NIH and US Federal Standard 
[22, 23].

Diversity assessment
To assess the diversity, we applied the Shannon diversity 
index (H=−∑[(pi )×ln(pi )]) on OCT normative databases 
participants’ race and sex. We compared the OCT diver-
sity index with the sex and race diversity of the ten most 
populous countries’ world populations [24]. Addition-
ally, we compared the open-angle glaucoma sex and race 
diversity indexes from two meta-analyses [25, 26].

Results
The FDA has two regulatory pathways to approve medi-
cal devices in the USA the FDA approval, which is 
required for new and innovative devices, and the FDA 
510(k) clearance when the device is equivalent to an 
already FDA-approved one on the market. In this study, 
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all the OCTs have received FDA clearance through the 
510(k) pathway.

Carl Zeiss Cirrus 500, 5000
The Carl Zeiss Cirrus 500 and 5000 (Carl Zeiss Meditec, 
Inc., Dublin, CA) are Spectral Domain OCT machines 
with a 5 μm axial resolution and a scan speed of 27,000 to 
68,000 scans/second. The Cirrus performs anterior seg-
ment, posterior segment, and iris exams [27]. The most 
recent FDA-approved normative database is for the Cir-
rus 400 and 4000.

Normative database
The normative database for the Cirrus includes data for 
Retinal Nerve Fiber Layer (RNFL), Macula, Optic Nerve 
Head (ONH), and Ganglion Cell Layer (GCL) [28]. It 
includes 284 subjects (282 subjects in the macula data-
base) from seven non-specified centers. The demo-
graphic distribution of the Cirrus normative database is 
detailed in Table 1.

Inclusion criteria were for patients older than 18 years 
with normal Humphrey Visual Field Test (HVFT) 24 − 2 
results and intraocular pressure (IOP) lower than 21 
mmHg. Exclusion criteria were patients with best cor-
rected visual acuity (BCVA) worse than 20/40, refractive 
error outside the ranges of -12.0 to + 8.0, previous oph-
thalmic laser or incisional surgery, active infection of the 
anterior or posterior segment, diabetic retinopathy, dia-
betic macular edema or vitreoretinal disease, diabetes, 
leukemia, AIDS, systemic hypertension, dementia, or 
multiple sclerosis.

The statistical strategy applied for the Cirrus normative 
database was a Fitted Regression Model (expected mean 
reading (age) + Normative limit (100x %) < Observed 
reading (age)). The 1st, 5th, and 99th percentiles were 
estimated by the empirical distribution of residual, and 
results were grouped and adjusted by age.

XR RTVue Avanti
The Optovue (Optovue Inc., Fremont, CA) Widefield 
Avanti is a spectral domain OCT with a 5 μm axial res-
olution and a scan speed of 70,000 a-scans/second [29]. 
The Avanti performs anterior segment, posterior seg-
ment, and iris exams.

Normative database
The FDA-approved RTVue Avanti normative databases 
for ganglion cell complex, RNFL, retinal thickness, optic 
disc cup, and disc cup were collected from 11 interna-
tional clinical sites [30, 31]. The dataset comprises 640 
eyes of 480 patients aged 18–84 years, and their demo-
graphic distribution is detailed in Table  1. The inclu-
sion criteria were participants older than 18 years with 
a normal HVFT 24 − 2 and IOP less than 22 mmHg. All 
patients with any ocular pathology were excluded from 
the normative dataset.

The statistical strategy employed was a Pearson Cor-
relation Coefficient Analysis grouped and adjusted by 
age, signal strength, and disc area. The RTVue Avanti 
also has an expanded ethnic database available in the 
software update to version 4.0, with 861 eyes of patients 
aged 19–82 years from 15 multinational sites, six in the 
US, three in China, one in London, three in Japan, and 
two in India [31]. The reported ethnicity of this expanded 
database comprised 33% White, 22% Asian, 29% Afri-
can American, 12% Hispanic, 12% Indian, and 1% other. 
Similarly, the expanded ethnic normative database area is 
adjusted by age, signal strength, and disc area, allowing 
comparison across eight distinct populational groups or a 
combination of all.

Heidelberg Spectralis
The Heidelberg Spectralis (Heidelberg Engineering, Inc., 
Germany) is a Spectral Domain OCT with a 7 μm axial 
resolution and a scan speed of 40,000 a-scans/second 
that perform anterior and posterior segment exams.

Table 1 Comparative table of OCT’s normative databases characteristics and demographics
CIRRUS AVANTI SPECTRALIS TRITON

Patients, n 284 480 330 410

Eyes, n 284 640 330 410

Sex (male,) n(%) 133 (47.2) 215 (44.79) 146 (44.2) 194 (47.3)

Age, years Range 18-84 18-84 20-90 18-70+

Race and ethnicity (%) White 43 33 79.7 58

Black 18 20 12.42 22

Asians 24 22 7 8

Hispanic* 12 12 0 0

Other 3 13 0.9 12

Population country Non-specified Non-specified Canada, Germany, US US

Statistical analysis Fitted Regression Model Pearson Correlation 
Coefficient Analysis

Multiple Linear 
Regressions

Quantile 
Regres-
sion

Comparative table of OCT’s normative databases characteristics and demographics
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Normative database
The Heidelberg Spectralis normative database for RNFL 
and optic nerve head includes 330 eyes of 330 sub-
jects aged 20–90 years from Canada, Germany, and the 
US [32]. The demographic distribution is presented in 
Table 1.

The database inclusion criteria were patients with 
refractive error between − 6 and + 6 spherical diop-
ters, astigmatism ≤ 2 diopters, IOP ≤ 21 mmHg, and 
BCVA ≥ 20/40. The exclusion criteria were those with 
prior intraocular surgery (excluding cataract or LASIK), 
vitreoretinal disease, diabetic retinopathy, and optic disc 
disease. The statistical strategy applied was Multiple 
Linear Regressions method adjusted by age and Bruch’s 
Membrane Opening area.

Topcon DRI Triton
The Topcon DRI OCT Triton (DRI-OCT Triton, Topcon 
Inc., Japan) is a Swept-source OCT with an 8  μm opti-
cal and 2.6 μm digital axial resolution and a scan speed of 
100,000 a-scans/second.

Normative database
The DRI Triton normative database for full retinal thick-
ness, RNFL, GCL, GCL plus the inner plexiform layer 
thickness, and the optic disc, includes 410 patients and 
eyes ranging from 18 to 70 + years, collected from six 
clinical sites in the US [33]. The demographic distribu-
tion is detailed in Table 1.

The inclusion criteria were patients of more than 18 
years with normal eyes, and the exclusion criteria were 
those with glaucomatous optic nerve damage according 
to the hemifield visual field test.

The applied statistical strategy employed Quan-
tile Regression with age and/or disc area as regression 
covariates.

Diversity
Diversity is an important factor when evaluating OCT’s 
normative databases. In terms of race, the Avanti data-
set has the highest diversity index, followed by Cirrus, 
Triton, and Spectralis. However, race and ethnic descrip-
tions are not consistently reported in every country, with 
descriptions of only three of the ten most populous coun-
tries (China, USA, and Brazil), which limits the analysis 
of diversity indexes.

All the OCT datasets have similar sex diversity indexes. 
This is consistent with the diversity index observed in the 
World population and in the ten more populated coun-
tries (Table 2).

In the open-angle glaucoma meta-analysis diversity 
index comparison, the sex index is similar across all 
OCTSs, while the race index is closer to the Triton and 
Cirrus. The Triton datasets include only patients from 
the USA, while Cirrus and Avanti datasets do not specify 
the patient’s nationality. In contrast, the Spectralis data-
set includes multinational participants.

Although the Shannon diversity index may not always 
indicate the generalizability of datasets, it is important 
to take diversity into account when interpreting OCT 
results to ensure that diagnostic and treatment decisions 
are not biased toward a specific group or population.

Discussion
In this study, we highlight the limitations of fairness and 
generalizability of Cirrus, Avanti, Spectralis, and Triton 
normative databases. These limitations must be consid-
ered when interpreting OCT’s reports.

All OCTs included in the study provide normative 
databases for RNFL and optic disc parameters. The Cir-
rus, Avanti, and Triton machines include macular param-
eters, and the Cirrus, Avanti, and Triton include GCL 
comparison.

Diversity is critical for promoting the generalizability 
of results. Among the OCTs evaluated, the RTVue Avanti 
OCT has the largest normative database, with data from 
640 eyes, and the option to upgrade to an expanded 
ethnic database is larger still (with 861 eyes), with eight 
different ethnicity categories. However, the number of 
included patients is still limited, considering the multiple 
demographic strata.

Race and ethnicity are not routinely collected in many 
countries. Nevertheless, to promote fairness and gener-
alizability to minorities, improving demographic data 
collection is desirable. The applied classification is not 
uniform across the evaluated normative databases, and 
following standards is needed. The Cirrus and Avanti 

Table 2 Comparison of OCT normative databases diversity 
indexes, world population, and Open-angle glaucoma cohort
Diversity Index Sex Race
OCT Cirrus 0.692 1.377

Avanti 0.688 1.545

Spectralis 0.687 0.668

Triton 0.692 1.144

World Population 0.693 -

China 0.693 0.056

India 0.692 -

USA 0.693 1.185

Indonesia 0.693 -

Pakistan 0.693 -

Brazil 0.693 1.091

Nigeria 0.693 -

Bangladesh 0.693 -

Russia 0.690 -

Mexico 0.693 -

Glaucoma 0.688 1.239
Comparison of OCT normative databases diversity indexes, world population, 
and Open-angle glaucoma cohort
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databases include Hispanic and Indian as a subdivision 
of race. The American Standards for classification of Race 
and Ethnicity define five minimum categories for race 
(American Indian or Alaska Native, Asian, Black or Afri-
can American, Native Hawaiian or Other Pacific Islander, 
and White) and two categories for ethnicity (“Hispanic 
or Latino” and “Not Hispanic or Latino”) [22]. Perhaps 
more important to note is the inconsistency in racial/eth-
nic representation of the normative databases between 
OCTs, which may differ from populations for whom the 
normative databases are used.

The Spectralis normative database has a higher propor-
tion of White representation (79.7%), whereas the Cir-
rus normative database has a higher proportion of Asian 
patients representation (24%), and the Triton normative 
database has more Black representation (22%). None of 
the databases are perfectly representative of the overall 
background US population, although the Spectralis is the 
most similar to overall US racial and ethnic demograph-
ics from the 2020 census data [34, 35].

Given the demonstrable architectural variations in reti-
nal layers between patients of different races and/or sex, 
it is crucial to understand whether the patient’s retinal 
architecture is actually being compared to what is ‘nor-
mal’ for someone of that demographic. For example, 
studies demonstrated that Black women have demon-
strably thinner central retinal thickness [36], and African 
Americans have a significantly lower mean foveal thick-
ness (vs. White/Hispanic), with males having a signifi-
cantly higher mean foveal thickness (regardless of race) 
[37–43]. These studies outline the importance of care-
fully accounting for sex and ethnicity when interpreting 
OCT scans in the clinical setting and emphasize how 
consequential a poorly-representative normative dataset.

Pediatric populations (< 18 years old) were not 
included in any normative database, making the assess-
ment of severity/deviation from ‘normal’ difficult in 
pediatric populations and emphasizing the need for nor-
mative pediatric databases [21, 44]. Elderly populations, 
which are the focus of studies evaluating dementia and 
Alzheimer’s disease, also are underrepresented in OCT 
normative databases [45, 46]. Leading to problematic 
generalizability in these groups.

While all normative databases apply traditional regres-
sion models stratified by age and/or optic disc size, none 
stratify according to ethnicity or sex, and more nuanced 
modeling techniques (i.e., machine learning algorithms) 
might help overcome biases posed by poorly-representa-
tive datasets were not applied in any regression analyses.

The Shannon diversity measurement evaluates the 
entropy among groups, however, do not reflect the fair-
ness or composition among the demographic distribu-
tion. Although the USA demographic is closer to the 
Spectralis normative database, the Triton diversity index 

is closer to the diversity of races distribution within Bra-
zil and the USA.

Collaborative international research using publicly-
available datasets in maximizing the safety and utility of 
Artificial Intelligence algorithms to healthcare has been 
described in detail elsewhere [47]. Publicly available 
data represents a possible means for overcoming pitfalls 
posed by limited sociodemographic representation in 
OCT datasets and facilitates collaborative research and 
validation studies. However, none of the manufacturer’s 
normative database data are publicly available among the 
OCT machines described herein,

As the scope for the use of technology in healthcare 
grows, an appreciation for the risks of unfair results 
is crucial. In order to optimize the accuracy of OCT 
interpretation, representative normative datasets and 
adjustments for patients’ unique sociodemographic qual-
ities are essential. In the meantime, sharing datasets and 
international collaboration can help illuminate how tech-
nology can be sensitively applied to marginalized popu-
lations and may help to mitigate the risk of these tools 
propagating current healthcare disparities.

Our study has some limitations. Firstly, our analysis 
relies on publicly available data from OCT manufac-
turers, which does include detailed information about 
demographics and measurement values, limiting the 
comparison. Secondly, although all machines use similar 
principles of physics, what the machines deem ‘normal,’ 
how results are shown, and retinal and optic nerve head 
boundaries vary widely between machines and there-
fore are not interchangeable [37, 48]. Lastly, the diver-
sity index only evaluates the entropy among groups and 
does not reflect the fairness or composition of the demo-
graphic distribution.

In conclusion, using digital ancillary imaging exams is 
becoming widespread in healthcare, with OCT helping 
diagnose and manage many ophthalmic diseases. The in-
built normative databases in OCT equipment have limi-
tations in fairness and generalizability when they are not 
representative of the patient populations for whom they 
are used. As a result, caution in OCT normality interpre-
tation is warranted. To address these limitations, there is 
a need for more diverse, representative, and open-access 
datasets that take into account patient demographics, 
especially considering the development of supervised 
Machine Learning algorithms in healthcare.
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