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Abstract 

Background This study aimed to develop a deep learning (DL) algorithm that enhances the quality of a single‑frame 
enface OCTA scan to make it comparable to 4‑frame averaged scan without the need for the repeated acquisitions 
required for averaging.

Methods Each of the healthy eyes and eyes from diabetic subjects that were prospectively enrolled in this cross‑
sectional study underwent four repeated 6 × 6 mm macular scans (PLEX Elite 9000 SS‑OCT), and the repeated scans 
of each eye were co‑registered to produce 4‑frame averages. This prospective dataset of original (single‑frame) 
enface scans and their corresponding averaged scans was divided into a training dataset and a validation dataset. In 
the training dataset, a DL algorithm (named pseudoaveraging) was trained using original scans as input and 4‑frame 
averages as target. In the validation dataset, the pseudoaveraging algorithm was applied to single‑frame scans 
to produce pseudoaveraged scans, and the single‑frame and its corresponding averaged and pseudoaveraged scans 
were all qualitatively compared. In a separate retrospectively collected dataset of single‑frame scans from eyes of dia‑
betic subjects, the DL algorithm was applied, and the produced pseudoaveraged scan was qualitatively compared 
against its corresponding original.

Results This study included 39 eyes that comprised the prospective dataset (split into 5 eyes for training and 34 
eyes for validating the DL algorithm), and 105 eyes that comprised the retrospective test dataset. Of the total 144 
study eyes, 58% had any level of diabetic retinopathy (with and without diabetic macular edema), and the rest were 
from healthy eyes or eyes of diabetic subjects but without diabetic retinopathy and without macular edema. Grad‑
ing results in the validation dataset showed that the pseudoaveraged enface scan ranked best in overall scan quality, 
background noise reduction, and visibility of microaneurysms (p < 0.05). Averaged scan ranked best for motion artifact 
reduction (p < 0.05). Grading results in the test dataset showed that pseudoaveraging resulted in enhanced small ves‑
sels, reduction of background noise, and motion artifact in 100%, 82%, and 98% of scans, respectively. Rates of false‑
positive/‑negative perfusion were zero.
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Background
Optical coherence tomography angiography (OCTA) is 
an imaging modality that generates images of the retinal 
and choroidal vasculature by repeatedly scanning one 
area and inferring the presence of blood flow between 
sequential images based on the decorrelation signal [1]. 
Sequential scanning of the same area increases the acqui-
sition time in comparison to single acquisition and leads 
to a higher incidence of artifacts such as motion artifact 
[2]. The presence of such artifacts and noise may affect 
image interpretation and impair quantitative image anal-
yses [3]. In this context, strategies to improve imaging 
quality are needed to overcome such artifacts.

Several hardware and software strategies have been 
employed to overcome imaging artifacts on OCTA and to 
optimize the signal-to-noise ratio, such as the implemen-
tation of active eye tracking and averaging of images [1]. 
By registering repeated OCTA scan acquisitions, averag-
ing achieves higher signal-to-noise ratio and improves 
the visualization of the microvasculature in healthy eyes, 
as well as eyes with retinal pathology [4–10]. Although 
proven to be effective, averaging is a time consuming 
strategy that requires post-acquisition processing and 
registration of the repeated images [11]. Kadomoto et al. 
showed that the time spent to obtain a 10-frame averaged 
image was nearly 17 times the time required for a single 
acquisition [11, 12]. Of note, averaging in Kodomoto’s 
study was done as a built-in feature, so even more time is 
expected for systems where averaging is done as a sepa-
rate process.

Deep learning (DL) is another potential strategy where 
an algorithm can be trained to construct high-quality 
scans from lower-quality scans [13, 14]. Such denoising 
DL algorithms were extensively studied in the field of 
neuroimaging [15]. In one study an algorithm was trained 
to enhance low-dose gadolinium contrast magnetic reso-
nance images of the brain to make it appear comparable 
to full-dose scans, thereby achieving diagnostic quality 
images with gadolinium doses tenfold lower than those 
typically used [16]. Similarly, a spectral domain (SD) 
OCTA DL denoising algorithm has been reported, com-
paring single OCTA enface 3 × 3  mm scans to 4-frame 
averaged enface scans, showing improvements in signal-
to-noise ratio and pathology detection. [11, 12, 17]

Swept-source (SS) optical coherence tomography 
(OCT) instruments, with their higher scan speeds, allow 

for faster acquisition times and larger scanning areas 
compared to SD-OCT devices [18]. As SS-OCT instru-
ments continue to become more widely available, strat-
egies to improve image quality on SS systems are also 
necessary. To the best of our knowledge, DL denois-
ing strategies have not yet been applied to OCTA scans 
obtained by a SS instrument. Therefore, in this study a 
DL pseudoaveraging (denoising) algorithm of SS-OCTA 
enface scans from healthy and diabetic eyes was devel-
oped and validated by comparing the original (single-
frame) scan to the 4-frame averaged and pseudoaveraged 
scans (the scans produced by applying the pseudoaverag-
ing denoising algorithm to the single-frame scans). Fur-
thermore, the algorithm’s performance was assessed for 
image quality enhancement and potential introduction of 
artifacts in a separate test dataset by comparing the origi-
nal scan against the pseudoaveraged scan using a com-
prehensive qualitative grading of both the superficial as 
well as the full-thickness retina slabs.

Methods
This cross-sectional study consists of participants pre-
senting to the New England Eye Center (NEEC), Tufts 
Medical Center (TMC), Boston, Massachusetts from 
July 2019 through March 2020. Informed consent was 
obtained from all participants. This study received 
approval by the institutional review board and abided 
by the Declaration of Helsinki and the Health Insurance 
Portability and Accountability Act.

Study population
This study is composed of a prospective dataset (split into 
a training dataset and validation dataset) and a retrospec-
tive test dataset.

Prospective dataset
Eyes included in the prospective dataset were of self-
reported healthy participants or those with diabetes and 
any level of diabetic retinopathy (DR) with or without 
diabetic macular edema (DME). Patients underwent a 
comprehensive ophthalmic examination including imag-
ing, in which the absence of any retinal diseases was 
confirmed for self-reported healthy participants, and the 
presence of DR and DME, and level of DR were assessed 
for diabetic participants. All study eyes in the prospective 
dataset underwent four repeated sequential OCTA scans 

Conclusion Pseudoaveraging is a feasible DL approach to more efficiently improve enface OCTA scan quality with‑
out introducing notable image artifacts.
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using the PLEX® Elite 9000 SS-OCT (Carl Zeiss Meditec, 
Dublin, CA).

Retrospective test dataset
The retrospective test dataset is composed of eyes from 
diabetic subjects (with and without DR and with and 
without DME) that had been previously imaged with a 
6 × 6 mm scan centered on the fovea on the PLEX® Elite 
9000 SS-OCT at the NEEC/TMC, between Jan 2017 and 
Jul 2018.

Inclusion and exclusion criteria
All participants were over 18 years of age, and either or 
both eyes were included. Exclusion criteria included 
media opacity precluding acceptable quality OCTA 
images, concomitant non-DR macular pathology, and 
inability to provide a written informed consent. Unless 
the artifact was severe enough to render an image 
unreadable, eyes with artifacts were included in this 
study. This was to maximize generalizability and to 

evaluate the performance of the DL algorithm on images 
comparable to those obtained in a typical clinical setting. 
For the same reason, low scan signal strength was not an 
exclusion criterion.

The SS‑OCT system
The PLEX® Elite 9000 SS-OCT (Carl Zeiss Meditec, 
Dublin, CA) system performs at a scanning speed of 
100,000 A-scans/s and has a wavelength near 1060  nm, 
achieving tissue axial resolution of 6.3 μm and transverse 
resolution of 20 μm. All OCTA scans were 6 × 6 mm cen-
tered on the fovea, and each volume had a sampling den-
sity of 500 A-scan per B-scan and a total of 500 B-scans. 
Segmentation in all scans was assessed and manual cor-
rection was done when needed.

Study workflow (Fig. 1)
We split the prospectively acquired data into a training 
dataset, selected based on good-quality corresponding 
averages, and a validation dataset to train and validate 

Fig. 1 Schematic diagram illustrating the workflow of this study. The 39 prospectively collected eyes underwent 4 repeated 6 × 6 mm macular 
scans on the Zeiss PLEX Elite SS‑OCT, and the repetitions were co‑registered to generate an averaged volume. This dataset was split into a training 
dataset (5 eyes) and validation dataset (34 eyes). In the training dataset, the single‑frame enface OCTA scan was used as an input and it was paired 
with its corresponding enface OCTA 4‑frame average as a target to train the denoising or pseudoaveraging algorithm. Additional training 
of the algorithm (not shown here) was done by using 8 low‑quality single‑frame enface OCTA scans as an input and high‑quality single‑frame 
OCTA scan of the same eye as an output (peer‑to‑peer training). For the validation dataset, the pseudoaveraging algorithm was applied 
to the best‑quality single‑frame enface OCTA scan (out of the 4 repeated single‑frame acquisitions), and the resulting pseudoaveraged scans 
were compared against their corresponding original single‑frame scans as well as against their 4‑frame averaged scans. In a separate test dataset 
of 105 eyes retrospectively collected, the algorithm was applied to single‑frame enface OCTA scans, and the original and its corresponding 
pseudoaveraged enface scans were compared
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the performance of the denoising or pseudoaveraging 
algorithm, respectively. The retrospective dataset served 
as a separate test dataset. The workflow of this study is 
depicted in Fig. 1 and described in detail in Fig. 1.

Averaging and pseudoaveraging (Denoising)
Averaging
The 4-frame averages were created using a custom-made 
program written in C++/C# language that uses both 
structural and flow data by registering each of the four 
repetitions to a reference, topographically—using com-
mon key points observed in flow data projections, and 
axially—using retinal layer information in the structural 
data. For simplicity, the enface OCTA projection/scan 
from the 4-frame averaged volume will be referred to as 
the “averaged” scan and will be used interchangeably with 
“4-frame averaged” scan throughout this paper.

Pseudoaveraging (Denoising)
To create the pseudoaveraged scans, a 5-layer U-net 
convolutional neural network with stochastic  gradient 
descent optimization was used. The pseudoaveraging 
algorithm was trained using the single-frame enface 
OCTA scan as input and its’ corresponding 4-frame 
averaged enface OCTA scan as a target. The single-
frame input scan was selected as the one with the best 
quality out of the 4 repeated single-frame acquisitions 
for each eye in the training dataset. Since the aver-
aged scan was used as the “target” scan to train the 
algorithm, we selected the scans for the training data-
set as the ones with best averaged scans’ quality. The 
averaged scan quality was evaluated based on subjec-
tive assessment of the visibility and quality of clinically 
relevant image features such as appearance of small 
vessels and presence of background noise. Moreover, 
although the scans selected for training were among 
the best in terms of overall averaged scan quality, in 
some instances a small region or “a patch” of the aver-
aged scan was affected by artifact (e.g., a small region of 
the averaged scan had low signal strength due to shad-
owing from media opacity, or was impacted by motion 
artifact). In order to prevent training the DL model 
from viewing these patches with artifact as “targets” 
for training, these regions in the target averaged scans 
were manually masked. Lastly, besides the “single-to-
average” pairs training, additional “peer-to-peer” train-
ing was done by using low-quality single-frame enface 
OCTA scan as an input and high-quality single-frame 
OCTA scan of the same eye as an output. This was 
done to improve the ability of the algorithm to process 
images with regions of low quality or low signal without 
rendering them as apparently ischemic. In other words, 
to prevent the algorithm from erroneously identify 

these regions as noise or artifact and subsequently 
denoising them. After training, the DL algorithm was 
applied to single-frame enface OCTA scans in the vali-
dation and test datasets, and the outputted pseudoav-
eraged scans were compared against other scans as 
detailed later under grading section.

Architecture of the pseudoaveraging algorithm
The pseudoaveraging algorithm is a convolutional neu-
ral network that is a 5-layer U-net operating on 64 × 64 
patches from a single-frame scan, trained against corre-
sponding patches of 4-frame averaged scan of the same 
eye (single-to-averaged pairs), so each scan consisted of 
approximately 1000 patches, and this can be considered 
the effective training dataset sample size, which is a num-
ber significantly larger than the seemingly small training 
dataset sample size if one to only consider the number 
of scans as the training dataset sample size. This strat-
egy relies on the use of data augmentation, allowing for 
network end-to-end training from very few images [19]. 
The implementation of the training strategy in our study 
was similar to that in Ronnenberger et  al., but using an 
L1 norm of the difference with the ground truth as a cost 
function instead of soft-max/cross entropy. [19]

OCTA enface slab selection
In our training, validation, and testing procedure, we 
used the OCTA enface projections, and we used the 
PLEX® Elite preset slabs defined as follows: the preset 
superficial slab is defined by the internal limiting mem-
brane as its upper boundary, and the inner plexiform 
layer as its lower boundary. The preset full-thickness ret-
ina slab is defined by the inner limiting membrane as its 
inner slab boundary and an offset above the RPE-fit by 
70 μm as its outer boundary.

The PLEX® Elite superficial slab was used for train-
ing the pseudoaveraging algorithm. The reason for 
choosing the superficial slab for training the algorithm 
is that the averaging function we used performed bet-
ter in the superficial slabs compared to the full-thick-
ness retina slabs, because averaging of the denser retina 
slabs resulted in tiny errors in registration that caused a 
decrease in contrast in the finest vessels of the averaged 
retina scan (unpublished data). We validated the model 
performance using the full-thickness retina slabs in the 
validation dataset and tested the model’s performance 
using both the superficial and full-thickness retina slab 
in the test dataset. Although the model was trained and 
validated using different slabs, the slabs are not really 
distinct since the superficial slab is essentially part of the 
full-thickness retina slab as defined above.
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Scans grading (ranking)
For validating and testing the model’s performance, our 
ultimate metric that we chose was the grader evalua-
tion of image quality, rather than a numerical measure 
of image quality; the latter is often more objective and 
easier to calculate, but can correlate less well with actual 
utility. The grading was done independently by two grad-
ers masked to scans labels. The two graders have exper-
tise in imaging interpretation and are active in clinical 
ophthalmology.

Grading the validation dataset
For grading eyes in the validation dataset, a single, an 
averaged, and a pseudoaveraged scan of each eye were 
ranked by two masked graders (OAQ, LSMM). All 
images in the validation dataset were full-thickness reti-
nal enface OCTA slabs. Grading was done using a Mac 
operating system with the default Preview software. The 
two masked graders independently ranked images based 
on a subjective qualitative grading system that evaluated 
scan’s quality metrics (overall scan enhancement, back-
ground noise reduction, motion (line) artifact reduction, 
appearance of small vessels, and continuity of the foveal 
avascular zone [FAZ] contour) and pathologic features 
visualization metrics (appearance of areas of non-perfu-
sion and pruned vessels, and visibility of microaneurysms 
[MA]). A detailed definition of all grading metrics is pro-
vided in Additional file 2: Table S1. Ranking score was 1 
through 3, with a score of 3 being the best rank, relative 
to the other two masked scans for each of the grading 
metric defined above. Equal ranking was allowed when 
two or more images appeared similar and the differ-
ence was not clinically meaningful (i.e., not expected to 
impact image interpretability or features visualization). 
Open adjudication was performed whenever scans were 
ranked differently between the two masked graders until 
agreement was reached in all cases. Senior study member 
(NKW) was available in case agreement was not reached.

Grading the test dataset
For grading eyes in the test dataset, two enface OCTA 
scans (single and pseudoaveraged) were compared, 
and additional metrics evaluating the presence of false-
positive/-negative perfusion and the presence of arti-
facts introduced by pseudoaveraging were included 
(Additional file 2: Table S1). The superficial slab and the 
full-thickness retina slab were used in the test dataset 
grading.

Statistical analysis
Demographics were summarized using summary sta-
tistics. For the validation dataset, the Wilcoxon Signed 
Rank test was selected as the test of choice to compare 

the ranking of images in the validation dataset since this 
test is a non-parametric test that is appropriate for paired 
data (pre- and post-processed scans of the same eye). 
Results from grading the test dataset were reported using 
summary statistics (absolute numbers and percentages of 
scans that showed improvement or presence of an arti-
fact when comparing the pseudoaveraged to the original 
scan). A two-sided p-value of < 0.05 was considered sta-
tistically significant for these exploratory analyses.

Results
Eighty four participants were included with a mean (SD) 
age of 55 (15.9) years old, and 45% were female (Table 1). 
Of their 144 included eyes, approximately 42% were 
healthy eyes or from diabetic subjects but without DR, 
24% had mild non-proliferative DR (NPDR), 10% had 
moderate NPDR, 7% had severe NPDR, and 17% had 
proliferative DR (Table 1). Five eyes were included in the 
training dataset, 34 eyes were used as a validation data-
set, and 105 eyes were used as a separate test dataset 
(Table 1, Fig. 1).

Validation dataset
In the validation dataset, the full-thickness retina slabs 
of the original, averaged, and pseudoaveraged (denoised) 
scans were ranked and grading showed that for overall 
scan quality, background noise reduction and appearance 
of areas of non-perfusion/pruned vessels and for visibil-
ity of microaneurysms, the pseudoaveraged scan ranked 
best (p < 0.05). The averaged scan ranked best for motion 
(line) artifact reduction and lowest for appearance of 
small vessels and FAZ contour continuity (p < 0.05) 
(Table 2) (Fig. 2 and Additional file 1: Fig. S1).

Test dataset
In the test dataset, original scans were compared against 
their corresponding pseudoaveraged scans. Grading 
showed that pseudoaveraging resulted in enhancement 
of appearance of small vessels, reduction of background 
noise, and reduction (but not complete resolution) 
of motion artifacts in 100%, > 82%, and 98% of scans, 
respectively, and results were comparable in the full-
thickness retina slabs and superficial slabs (Table 3). The 
rates of false-positive or false-negative perfusion were 
zero in either slab. However, a partial attenuation of FAZ 
contour was noted in 4.8% (5/105) of full-thickness retina 
slabs and 0.95% (1/105) of superficial slabs (Fig. 3). Addi-
tionally, background noise reduction of FAZ was incom-
plete in a subset of scans; in the full-thickness retina slabs 
there was residual noise that was noticeable in 27.6% and 
subtle in 16.2% scans, and in the superficial slab FAZ 
residual noise was not noticeable and was subtle in 7.6% 
of scans (Table 3, Fig. 3).
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Discussion
In this cross-sectional study, we developed and validated 
a DL algorithm that improves the quality of OCTA enface 
scans obtained on a SS-OCT system, and we tested the 
algorithm’s performance using a diverse set of scans com-
parable to those acquired in clinical settings. Our find-
ings demonstrate that pseudoaveraging of single OCTA 
scans using a DL algorithm is a feasible and a potentially 
faster approach than OCTA image averaging to improve 
scan quality and feature visualization without the need 
for the repeated acquisitions required for averaging and 
without introducing notable image artifacts that may 
appear after denoising.

Pseudoaveraged scans were superior to single OCTA 
scans as well as, surprisingly, averaged OCTA scans in 
most grading parameters. One reason why averaged 
OCTA scans were of lesser quality than pseudoaver-
aged scans may be due to imperfect co-registration of 
the repeated acquisitions that make up an averaged scan. 
Additionally, the quality of an averaged scan is depend-
ent on the quality of each of its constituent acquisitions, 
and since acquiring repeated scans increases the imaging 
time and procedural complexity, the quality of the repeti-
tions may be suboptimal—especially when imaging older 
subjects with ocular opacities, poor fixation, and ocular 
fatigue. We believe that for these reasons the averaged 

Table 1 Characteristics of study datasets

Blue stained embryos were recorded as GUS +  and unstained embryos as GUS−

Table 2 Validation dataset grading results

Comparisons and p‑values using the Wilcoxon Signed Rank Test; PseudoAvg: Pseudoaveraged scan; FAZ: Foveal Avascular Zone; MA: microaneurysms

Grading Metrics PseudoAvg vs. original 
(better ranked scan)

PseudoAvg vs. averaged 
(better ranked scan)

Averaged vs. 
Original (better 
ranked scan)

Scan Quality Metrics Overall Scan Enhancement PseudoAvg p < 0.0001 PseudoAvg p < 0.0001 Equal p = 0.4575

Background Noise Reduction PseudoAvg p < 0.0001 PseudoAvg p < 0.0001 Equal p = 1.0

Motion (line) Artifact Reduction PseudoAvg p = 0.031 Averaged p < 0.0001 Averaged p < 0.0001

Small Vessels Appearance PseudoAvg p < 0.0001 PseudoAvg p < 0.0001 Original p < 0.0001

Continuity of FAZ Contour Equal p = 0.625 PseudoAvg p = 0.0013 Original p = 0.0011

Pathologic features Metrics Appearance of Non‑perfused Areas PseudoAvg p = 0.032 PseudoAvg p = 0.0098 Equal p = 0.5058

Appearance of Pruned Vessels PseudoAvg p = 0.001 PseudoAvg p = 0.0078 Equal p = 0.1250

Visibility of MAs PseudoAvg p = 0.0005 PseudoAvg p = 0.0002 Equal p = 0.0625
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Fig. 2 Example of a single (top), an averaged (middle), and a pseudoaveraged (bottom) full‑thickness retinal enface OCTA scan in a healthy eye. 
It is noted how the overall scan quality, small vessels continuity, and background noise reduction are best in the pseudoaveraged scan. It is noted 
how the averaged scan is the best for motion (line) artifact correction;s however, the small vessels appear blurry in this scan (insets)
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scan ranked lowest for continuity of small vessels and 
FAZ contour appearance.

The only exception where the averaged scan was 
superior to the other scans was in motion (line) artifact 
correction. Compared to the original scan, the pseudoav-
eraged scan reduced line artifacts but did not completely 
resolve them. Averaging, on the other hand, uses data 
from multiple acquisitions and is able to compensate for 
regions affected by motion utilizing unaffected repeated 
scans, therefore allowing for more complete removal of 
line artifacts.

Results from the test dataset demonstrated significant 
improvement in the quality of superficial and full-thick-
ness retina slabs after pseudoaveraging without intro-
ducing notable image artifacts such as false-positive or 
false-negative perfusion, which may theoretically occur 
as a result of denoising by DL algorithms. Of note, ear-
lier iterations of the presented pseudoaveraging algo-
rithm tended to interpret regions in the original scan 
with low signal as noise and subsequently denoised these 
regions, causing them to appear as false-negative perfu-
sion (not shown here). In contrast, the denoising algo-
rithm reported by Kadomoto and Kawai et al. seemed to 
also err on the side of false-positive perfusion (in up to 
5.7% of scans), where noise was turned into “fictional ves-
sels” [11, 12]. We were able to bring the rate of false-neg-
ative perfusion artifact to zero by training the presented 
algorithm with careful selection of high-quality original-
averaged pairs for the training dataset, manually masking 
regions of low signal in the scans in the training data-
set, peer-to-peer training (pairs of poor-to-good  qual-
ity single-frame images), and matching the brightness/
contrast pre- and post-denoising. The tendency of the 
earlier iteration of our presented pseudoaveraging algo-
rithm to over-denoise compared to the ones published by 
other groups highlights that care should be taken when 

developing a DL denoising or pseudoaveraging algorithm 
to correctly identify noise as such and remove it without 
over- or under-denoising. The approaches we used in 
our training can be used as a strategies to overcome such 
artifacts when it arise.

The presented denoising algorithm had limitations. 
Firstly, there was partial attenuation of FAZ contour in 
a few retina projection scans (5/105) and in one super-
ficial projection scan (1/105). Secondly, the background 
noise reduction in FAZ was sometimes incomplete and 
residual noise was noticeable in a subset of full-thickness 
retina slabs but appeared very subtle in a few superficial 
slabs. Nonetheless, the FAZ contour attenuation was lim-
ited to about one clock hour or less and the full contour 
of FAZ could still be delineated in all cases and, as shown 
in Fig.  3, the attenuation in some cases may be at least 
partially due to inadequate brightness/contrast adjust-
ment rather than due to pseudoaveraging. Likewise, the 
residual FAZ noise was subtle in most cases and essen-
tially cosmetic. Both flaws do not affect image interpret-
ability, which makes them relatively minor. The slightly 
higher rates of these flaws in the full-thickness retina 
slabs suggest that the presented algorithm performs bet-
ter in the superficial slab compared to the full-thickness 
retina slab. This is maybe partially explained by the fact 
that the algorithm was trained using the superficial slab. 
Additionally, the full-thickness retina slab is thicker with 
denser capillary beds and more noise which render it 
more challenging to denoise.

This study’s strengths include its relatively large and 
diverse sample, including the test dataset that is com-
posed of scans with varying quality and pathology lev-
els making it comparable to images acquired in clinical 
settings. Our study used a SS-OCT system—a technol-
ogy that presents advantages in comparison to a spec-
tral domain system such as higher signal penetration, 

Table 3 Test dataset grading results

FAZ: Foveal avascular zone

Grading Metrics Proportion of scans after pseudoaveraging, No. (%)

Full‑thickness retina slab 
(No. = 105)

Superficial slab (No. = 105)

Scan Quality
Metrics

Enhanced Small Vessels Appearance, No. (%) 105 (100%) 105 (100%)

Motion (line) Artifact Reduction, No. (%) 56/68 scans (82%) 64/75 scans (85%)

Background Noise Reduction, No. (%) 103 (98%) 103 (98%)

Artifact Assessment
Metrics

False‑Negative Perfusion, No. (%) 0 (0%) 0 (0%)

False‑positive perfusion, No. (%) 0 (0%) 0 (0%)

Partial Attenuation of FAZ Contour, No. (%) 5 (4.8%) 1 (0.95%)

FAZ Residual Noise Artifact

 Noticeable, No. (%) 29 (28%) 0 (0%)

 Subtle, No. (%) 17 (16%) 8 (7.6%)
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higher scanning speeds, and potentially lower motion 
artifact.18 These advantages may be further magnified 
when evaluating deeper layers such as the choriocapil-
laris. Furthermore, we used a wider OCTA scan com-
pared to previously published work (6 × 6 vs. 3 × 3 mm), 
and we evaluated both the superficial and full-thickness 
retina slabs. Limitations included enrollment of healthy 

and diabetic patients only, which may limit the general-
izability of this study in other retinal pathologies. Our 
ultimate metric that we chose to evaluate and test the 
model was the subjective grader evaluation of image 
quality, rather than a numerical measure of image qual-
ity; the latter is often more objective and easier to cal-
culate, but can correlate less well with actual utility. 

Fig. 3 Left panel: 6 × 6 mm enface OCTA scan demonstrating partial attenuation of FAZ contour in the pseudoaveraged scan at about 6 o’clock 
(middle) compared to the original scan (top). However, after adjusting the brightness/contrast histogram in image J, the vessel is no longer 
as attenuated and FAZ contour becomes more visible (bottom image) indicating that FAZ contour attenuation is at least partially due to inadequate 
brightness/contrast adjustment and not only due to pseudoaveraging. Right panel: cropped 6 × 6 mm enface OCTA scan from an eye with diabetic 
retinopathy. The arrows in the bottom image point to subtle residual FAZ noise in the pseudoaveraged scan (bottom scan)
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Furthermore, the grading parameters are well defined 
in this study and are comprehensive, assessing scans’ 
quality and pathologic features. Moreover, grading 
was done by two independent masked graders (a retina 
specialist and a retinal imaging research fellow) using 
standardized monitors, and grading was followed by 
open adjudication.

Conclusions
In this study using a SS-OCT system in healthy and dia-
betic eyes, a DL pseudoaveraging algorithm was trained 
and validated in a prospectively collected dataset and 
showed that pseudoaveraging improves scan quality and 
pathologic features visualization when compared to sin-
gle-frame original and 4-frame averages. We tested the 
algorithm in a retrospective dataset and found zero rates 
of false-positive or false-negative perfusion and no other 
major image artifacts that would negatively impact clini-
cal interpretation of the OCTA scans. Pseudoaveraging 
represents a promising approach to improving OCTA 
scans quality and utility without the need to acquire 
repeated scans for averaging. Future work will focus on 
expanding the diversity of retinal pathologies included, 
and it will address the impact of pseudoaveraging on 
quantitative OCTA metrics.
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