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Abstract
Background Optical coherence tomography angiography (OCTA) is an innovative technology providing visual and 
quantitative data on retinal microvasculature in a non-invasive manner.

Main body Due to variations in the technical specifications of different OCTA devices, there are significant inter-
device differences in OCTA data, which can limit their comparability and generalizability. These variations can also 
result in a domain shift problem that may interfere with applicability of machine learning models on data obtained 
from different OCTA machines. One possible approach to address this issue may be unsupervised deep image-
to-image translation leveraging systems such as Cycle-Consistent Generative Adversarial Networks (Cycle-GANs) 
and Denoising Diffusion Probabilistic Models (DDPMs). Through training on unpaired images from different device 
domains, Cycle-GANs and DDPMs may enable cross-domain translation of images. They have been successfully 
applied in various medical imaging tasks, including segmentation, denoising, and cross-modality image-to-image 
translation. In this commentary, we briefly describe how Cycle-GANs and DDPMs operate, and review the recent 
experiments with these models on medical and ocular imaging data. We then discuss the benefits of applying such 
techniques for inter-device translation of OCTA data and the potential challenges ahead.

Conclusion Retinal imaging technologies and deep learning-based domain adaptation techniques are rapidly 
evolving. We suggest exploring the potential of image-to-image translation methods in improving the comparability 
of OCTA data from different centers or devices. This may facilitate more efficient analysis of heterogeneous data and 
broader applicability of machine learning models trained on limited datasets in this field.
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Background
Optical coherence tomography angiography (OCTA) is 
an innovative, non-invasive technology capable of visual-
izing the flow within the retina. With its ability to provide 
quantitative data on retinal microvasculature at differ-
ent levels, OCTA holds great promise for facilitating 
the diagnosis and management of various retinal disor-
ders [1]. The rapid, continuous advancements in artificial 
intelligence (AI) and deep learning (DL) have potentiated 
several applications of computer vision in medical image 
analysis, including image classification, object detection, 
and segmentation [2]. However, inter-device variations in 
quantitative OCTA data [3, 4] may limit the applicabil-
ity of DL models across different OCTA devices – not to 
mention its restricting effect on the comparability of data 

from various studies and establishment of normative/dis-
ease-specific value ranges.

Main text
Inter-device variations in technical details and outputs
Several comparative studies have highlighted inconsis-
tencies in the information obtained from different OCTA 
machines. Parrulli and colleagues found significant inter-
device variability in the visualization of microaneurysms 
secondary to diabetic retinopathy (DR) using five OCTA 
machines. The mean numbers of detectable microan-
eurysms per eye, in both superficial and deep plexuses, 
were 16.1 ± 6.4 (Spectralis), 10.2 ± 4.5 (PlexElite), 9.3 ± 3.4 
(RTVue XR), 8.1 ± 3.8 (AngioPlex), and 8.9 ± 3.5 (DRI 
OCT Triton) (Fig. 1.a) [4].

Fig. 1 Comparison of optical coherence tomography angiography (OCTA) images from different devices. (a): en face scans by five commercial devices 
at the level of superficial and deep capillary plexuses (SCP and DCP) – small circles represent the detectable microaneurysms, denoted by alphabetical 
letters [4]; (b): the upper row shows en face scans at the level of SCP, DCP, and choriocapillaris (CC) obtained by two machines; the lower row shows cor-
responding binarized images [6]
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In addition to such visual variations, inter-device dif-
ferences in quantitative measurements have also been 
reported. Corvi et al. found significant differences in the 
area, vessel density, and fractal dimension of choroidal 
neovascularizations when using four different devices 
(PlexElite, Spectralis, RTVue XR, and AngioPlex). The 
Bland-Altman analysis indicated that differences between 
devices were too large to regard their measurements 
as interchangeable in routine practice [5]. Moreover, 
results from a study on 80 eyes with different DR severi-
ties showed poor agreement between Zeiss and Heidel-
berg OCTA devices in nearly all quantitative parameters 
except superficial vessel density – i.e., superficial vessel 
length density, deep vessel density, deep vessel length 
density, and choriocapillaris flow voids (Fig.  1.b) [6]. 
The presence or severity of retinopathy did not affect 
the magnitude of discrepancy [6]. The measurement of 
foveal avascular zone (FAZ) may also be subject to such 
inter-device inconsistencies, as reported by Anvari and 
coworkers; the mean FAZ area (mm2) was 0.31 ± 0.08 
(AngioVue) and 0.55 ± 0.16 (Spectralis) (p < 0.001) at the 
superficial layer and 0.26 ± 0.08 (Optovue) and 0.36 ± 0.13 
(Spectralis) (p < 0.001) at the deep layer [7].

These variations have been mostly attributed to differ-
ences in technical specifications of commercial devices 
and their decorrelation and segmentation algorithms 
[4–7]. In brief, the operating principle of OCTA involves 
comparing repeated B-scans of the same retinal section 
pixel-by-pixel to spot motion contrast corresponding to 
detectable vascular flow [8]. The sensitivity of an OCTA 
device is primarily determined by the inter-scan time – 
the shorter the inter-scan time, the more likely it is to 
miss areas with slower flow, and vice versa. The inter-
scan time consists of the following elements, which may 
differ from one device to another:

i) the B-scan acquisition time: depends on the 
A-scan rate (e.g., 70,000/s in AngioVue, 85,000/s in 
Spectralis, and 100,000/s in PlexElite) and sampling 
density (e.g., 304 × 304 in AngioVue, 512 × 512 in 
Spectralis, and 300 × 300 in PlexElite – for a 3 × 3 
scan).

ii) the fly-back time: refers to the time it takes for the 
OCT beam to return from one end of the B-scan to 
the other to repeat the same B-scan [8].

Even after receiving decorrelation signals, different sig-
nal processing methods can further contribute to inter-
device variability of the output data. For instance, a 
higher level of threshold masking in one device – aimed 
at reducing noise – may inadvertently conceal some weak 
yet present signals in the output, resulting in an attenua-
tion artifact [8]. Further heterogeneities may also result 
from each device’s built-in segmentation algorithm and 
boundaries [4].

Domain shift and domain adaptation
These inter-device output discrepancies limit the compa-
rability and generalizability of OCTA data and can also 
be considered a form of ‘domain shift’ problem. In the 
context of machine learning (ML), domain shift refers to 
changes in data distribution between the training data-
set (source domain) and the test dataset (target domain). 
Here, domain refers to the specific device type and acqui-
sition protocol, and domain shift reflects the differences 
in imaging devices and their parameterization [9].

Domain shift can significantly impair the performance 
of ML algorithms or DL models when applied to new, 
unseen data with different distributions from their train-
ing dataset. For example, a DL model that performs well 
on magnetic resonance imaging (MRI) data from one 
center may exhibit a weaker performance on MRI scans 
from another center [10].

Numerous domain adaptation methods have been 
developed and applied to address the challenge of 
domain shift when using ML/DL models with real-world 
data. In the context of medical image analysis, domain 
adaptation (DA) methods can be classified based on the 
model type (shallow/deep), label availability (supervised/
semi-supervised/unsupervised), and modality difference 
(single-source/multi-source), among other factors. A 
comprehensive discussion on various DA techniques is 
available elsewhere for the interested readership [10].

Image-to-image translation methods
Unsupervised deep image-to-image translation is a suit-
able domain adaptation method for our subject problem. 
An advantage of unsupervised training is not requiring 
paired image samples; obtaining exactly paired OCTA 
images using different devices can be technically diffi-
cult, expensive, and time-conuming. The main concept 
of image-to-image translation involves mapping the fea-
tures of an image from a source domain to the style of a 
target domain in a content-preserving manner [11]. Fol-
lowing is a brief overview of two systems we find help-
ful for this purpose – i.e., Cycle-consistent Generative 
Adversarial Network (Cycle-GAN) [12] and Denoising 
Diffusion Probabilistic Model (DDPM; also called the 
“diffusion model” for brevity) [13].

Cycle-consistent generative adversarial network
Cycle-GAN was first introduced by Zhu and colleagues 
[12] as a variant of the original GAN architecture [14]. 
Cycle-GANs perform unpaired image-to-image trans-
lation via two types of systems working together in an 
adversarial manner:

i) ‘generator’ for synthesizing images.
ii) ‘discriminator’ for discerning actual images from 

synthetic ones.
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For example, let there be two OCTA devices, ‘source’ 
and ‘target’, and let us call images from (or in style of ) the 
source and target devices as A and B, respectively. The 
original Cycle-GAN incorporates two of each type of sys-
tem [12]:

a) Generator 1 [G]: given A, returns synthetic B.
b) Discriminator 1: discerns real B from synthetic B.
c) Generator 2 [F]: given B, returns A.
d) Discriminator 2: discerns real A from synthetic A.

For translation consistency, each synthetic B produced 
by Generator 1 is fed to Generator 2 to produce a syn-
thetic A – forming a ‘cycle’. This synthetic A is compared 

pixel-by-pixel to the actual A, and the error (cycle-con-
sistency loss) is calculated and minimized over each 
epoch. A similar process is also done for the other gen-
erator system (see Fig. 2.a). In the meantime, the error of 
each discriminator in differentiating actual images from 
fake ones is gradually minimized by training.

Thus, both generators are continuously trained to syn-
thesize such realistic images that can fool the discrimi-
nators, whose accuracy is also improving simultaneously. 
We depicted a schematic visualization of the Cycle-GAN 
framework (see Fig.  2.a). To clarify, we used the word 
‘image’ and inserted a 2D OCTA scan in Fig.  2, but it 

Fig. 2 (a): Illustration of a cycle-consistent generative adversarial network (Cycle-GAN) – dashed squares in purple and cyan denote images from (or 
in the style of ) device A (source domain) and device B (target domain), respectively; G represents Generator 1 [source image → target image], and F 
represents Generator 2 [target image → source image]; (b): schematic map of hypothetical feature distributions of five devices; the actual feature maps 
are presumably more overlying, but for illustrative purposes, they are located more distantly in this illustration; (c): conventional direct cross-device trans-
lations diagram; (d): indirect cross-device translations using an intermediate domain as the bridge; Note: every two generators in one Cycle-GAN (i.e., 
forward and backward) are denoted by a red bidirectional arrow
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should not mislead to the assumption that the input/out-
put of Cycle-GANs are limited to 2D pictures – a tensor 
object like an OCTA-scanned cube would be suitable as 
well.

Denoising diffusion probabilistic model
Recent years have also witnessed parallel lines of research 
on non-adversarial generative networks that could 
enhance the quality of image-to-image translation. One 
such system with higher similarity scores than GAN is 
DDPM [13]. Throughout thousands of consecutive steps 
(i.e., Markov Chain), a diffusion model progressively adds 
Gaussian noise to an actual image and, then, as a gen-
erative model, reverses the corruption and tries to learn 
thousands of small steps to reconstruct high-quality, 
noise-free images from nearly pure noise (Fig.  3.a) [13]. 
Despite their time-consuming training process, diffu-
sion models are becoming increasingly popular in light of 
their high-quality outputs.

While diffusion models are most frequently utilized 
for de novo image synthesis, in 2021, Sasaki et al. pro-
posed a novel approach based on DDPM, i.e., UNpaired 

Image Translation with DDPM (UNIT-DDPM) [15]. The 
conceptual framework of UNIT-DDPM is illustrated 
(Fig. 3.b). Their approach connects the latent information 
learned by diffusion models across different domains, 
allowing the whole system to learn to gradually transform 
a pure noise sample to an image in the style of the target 
domain in a way that is related to the input image from 
the source domain. Their method brought about ~ 20% 
improvement in the accuracy of several state-of-the-art 
image-to-image translation models, including Cycle-
GAN [15].

Applications of image-to-image translation in medical and 
ocular imaging
Cycle-GANs
Many teams have investigated the utilization of Cycle-
GANs for unpaired medical image-to-image translation, 
serving a variety of purposes, such as segmentation, 
contouring, denoising, and cross-modality translation – 
reviewed in detail by Chen et al. [2]. To name a few, some 
studies have utilized or modified the Cycle-GAN struc-
ture to:

Fig. 3 (a): the original graphical depiction of the Denoising Diffusion Probabilistic Model by Ho et al., representing a denoising Markov Chain with T 
steps – for a given noisy sample t, a neural network is trained to approximate the next denoised image t-1 through calculating a probabilistic distribution 
of denoised data [13]; (b): a customized illustration of the conceptual framework of UNIT-DDPM, proposed by Sasaki et al. [15]
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i) transform computed tomography (CT) scans to MR 
images and vice versa [16],

ii) translate one MRI modality to another (e.g., proton 
density-weighted to T2-weighted) [17],

iii) correct CT scans affected by metal artifacts [18], or.
iv) reconstruct full-dose CT images from low-dose 

counterparts [19].
Moreover, applications of Cycle-GANs in transforming 
ophthalmic imaging data for the following purposes have 
also garnered attention [20]:

i) Data augmentation – e.g., synthesizing realistic 
images of rare diseases based on non-diseased 
counterparts to provide additional training data for 
diagnostic DL models’ training:
 a. normal OCT images → OCT images of rare 

retinal diseases, like macular telangiectasia, 
retinitis pigmentosa, macular hole, etc. [21].

b. normal ocular surface images → ocular surface 
images of conjunctival melanoma [22].

ii) Image enhancement – e.g., denoising, super-
resolution, and artifact reduction:
 a. noisy/artifactual [23] or hazy cataractous [24] 

color fundus photographs (CFP) → denoised [23] 
or dehazed [24] CFPs.

b. noisy/low-resolution retinal OCT images → 
denoised high-resolution retinal OCT images – 
outperforming several state-of-the-art denoising 
algorithms [25, 26].

iii) Domain transfer – e.g., cross-modality translation of 
images:
 a. Ultra-widefield fundus photographs → traditional 

CFPs [27] – and vice versa [28].
Among works involving OCT data is the study by Mana-
kov and colleagues, who modified the Cycle-GAN to 
reconstruct low-noise structural OCT scans (60 frames) 
from high-noise inputs (12 frames) (task ii.b). Their 
model outperformed some state-of-the-art denoising 
algorithms quantitatively and qualitatively (per masked 
ophthalmologists’ evaluation) and required 30% less 
computational power. A novelty of their work was using a 
shared discriminator instead of two, which allowed their 
model to focus on learning subtle inter-domain differ-
ences instead of learning redundant domain features that 
were identical in both domains. This technique also sig-
nificantly enhanced the quality of the generated images 
[25]. Such innovation may be relevant to our problem, as 
discussed later.

Differences in structural OCT images from differ-
ent machines can degrade the performance of DL mod-
els for retinal layer segmentation [29, 30]. To overcome 
this obstacle, Romo-Bucheli et al. utilized Cycle-GAN to 
translate OCT images from Cirrus to those from Spec-
tralis [30]. This maneuver allowed their segmentation 
models, trained on images from each device, to maintain 

accuracy when applied to images from the other device 
[30].

Diffusion models
The performance of diffusion models in several medi-
cal imaging tasks involving image generation, denoising, 
reconstruction, segmentation, and translation is being 
actively explored. However, their applications in this field 
are in the early stages, and there is limited available expe-
rience, compared to GANs [31]. Promising results have 
been reported by the few studies that employed diffu-
sion models for cross-modality medical image translation 
(e.g., CT-to-MR images), outperforming GANs [31].

In the field of ophthalmology, most of the existing expe-
rience involves de novo synthesis of images, like CFPs 
(i.e., data augmentation for more efficient training of DL 
models), in which the DDPM approach appears to do 
better than the original GAN method [32]. More recently, 
Hu and associates experimented with DDPM to denoise 
speckled OCT images so that the model would only need 
to learn the speckle pattern rather than the entire retinal 
structural details [33]. Their proposed method resulted 
in clearer visualization of subtle elements, like external 
limiting membrane; it also improved the signal-to-noise 
ratio more than the conventional method of averaging 
multiple b-scans at the same position [33].

Cross-device OCTA image translation
Efficient integration of detailed OCTA data in clinical 
practice requires addressing several issues, among which 
are the described variations in visual and quantitative 
outputs of different devices (see section  “Inter-device 
variations in technical details and outputs”). These varia-
tions can make it difficult to standardize value ranges 
– normal or disease-specific. Furthermore, manual pro-
cessing and analysis of complex 3D OCTA data may be 
labor-intensive, justifying the development of DL-based 
models for such tasks [34]. Yet, the domain shift problem 
can seriously affect the robustness of such DL models 
trained on data from a limited number of machines – as 
described earlier.

We assume that inter-device differences in OCTA data 
may be more concerning than in structural OCT data. 
Different OCT domains may show variations in the mea-
sured thickness of retinal layers, which may be less con-
fusing to the interpreting ophthalmologist. Nevertheless, 
such differences are significant [35] and, as mentioned 
earlier, can degrade the performance of DL models on 
unseen data [29, 30]. With OCTA data, not only do inter-
device variations limit the generalizability of DL models, 
but they are also more puzzling to interpret at the clinical 
level. That may be because:

i) Quantitative OCTA metrics are more diverse than 
quantitative structural OCT measures.
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ii) OCTA data is a derivative of OCT data, meaning 
there are two levels of inter-device variations; one is 
related to the acquisition and processing of structural 
data, and the other involves the technical aspects of 
flow signal mapping (as described in section “Inter-
device variations in technical details and outputs”).

To that end, we propose that cross-device transforma-
tion of OCTA data leveraging unpaired image-to-image 
translation techniques may be a promising approach. It 
should be noted, however, that this commentary does not 
report actual implementation of these experiments. Nev-
ertheless, we can think of a few challenges ahead in that 
direction, as described below.

Practical challenges
First, although data from different OCTA devices are not 
directly interchangeable [3, 5–7, 36], this may not nec-
essarily imply that the inter-domain variations are very 
large. Indeed, there may be many shared features among 
different OCTA domains, and as a downside, such over-
lapping features can interfere with competent learning 
of the model – because it tries to learn features that do 
not help transform one domain to another (see Fig. 2.b). 
To overcome this, as suggested by Manakov et al., using 
a shared discriminator may accelerate the training and 
improve the performance [25].

The second challenge is that training numerous models 
using the original Cycle-GAN architecture requires too 
much computational power, especially given the number 
of commercialized OCTA machines. For example, for 5 
devices, we will need 20 generators to perform all direct 
cross-device translations (see Fig. 2.c).

We think one possible solution is experimenting with 
alternative architectures that incorporate an interme-
diate domain with feature distributions lying between 
other domains (e.g., device C in Fig. 2.a). Hypothetically, 
this maneuver may enable indirect cross-domain transla-
tion with significantly reduced computational costs (see 
Fig.  2.c). Of note, the accuracy and efficiency of such 
indirect translation methods remain unclear. Alterna-
tively, multiple-domain variants of Cycle-GAN may also 
help, for example, StarGAN, which was introduced by 
Choi and colleagues in 2018 [37]. StarGAN works with 
only one generator and one discriminator, which does 
not only discern synthetic from actual images but also 
identifies the domain to which an image belongs [37].

The third challenge lies in the intrinsic difficulty of 
training GANs. To elaborate, the ideal outcome of the 
rivalry between the generator and the discriminator is 
achieving a Nash equilibrium between the models where 
they both excel at their tasks and cannot improve fur-
ther – i.e., the global optima. However, the training pro-
cess often encounters situations where the generator 
fails to grasp the full range of features and may produce 

identical, low-quality images over and over – i.e., ‘mode 
collapse’. This can occur when the generator has been 
provided with – or focused on – only a limited subset 
of the real-world feature distribution. Another reason 
may be the discriminator outpacing the generator in fea-
ture learning, consequently perceiving every synthesized 
image as fake, even if it is better than the last iteration. 
This hinders the generator’s further improvement [38]. 
Therefore, optimization of Cycle-GANs often proves 
difficult and burdensome. On the other hand, the non-
adversarial nature of DDPMs allows a more stable train-
ing process, where mode collapse may not be a problem 
[15].

The Fourth challenge is that domain adaptation across 
different devices alone cannot account for variations in 
the subject populations. Thus, large datasets represent-
ing a broad spectrum of healthy and diseased eyes are 
still necessary. Overall, technical aspects aside, acquiring 
representative OCTA data from different devices necessi-
tates large-scale collaborative efforts by multiple centers.

Conclusion
We are overwhelmed by the recent advancements in 
retinal imaging technologies and the rapid progress of 
advanced, efficient DL-based domain adaptation tech-
niques. In light of this, we propose that image-to-image 
translation methods have the potential to enhance the 
generalizability and comparability of OCTA data from 
different devices or centers. We strongly encourage inter-
disciplinary efforts in this direction, emphasizing the 
importance of ensuring that experts in the field are aware 
of such continuous advancements in unpaired domain 
adaptation approaches. Such efforts will pave the way for 
more efficient pooled analysis of OCTA findings from 
various centers, which will result in more conclusive 
interpretations of the existing yet heterogeneous data. 
Last but not least, this approach may also enable wider 
applicability of current or future ML/DL models trained 
on smaller datasets from a limited number of OCTA 
device types.
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