
Jones et al. 
International Journal of Retina and Vitreous            (2023) 9:60  
https://doi.org/10.1186/s40942-023-00497-2

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

International Journal
of Retina and Vitreous

Comparative analysis of alignment 
algorithms for macular optical coherence 
tomography imaging
Craig K. Jones1,2†, Bochong Li3†, Jo‑Hsuan Wu4, Toshiya Nakaguchi5, Ping Xuan6 and T. Y. Alvin Liu1,2* 

Abstract 

Background Optical coherence tomography (OCT) is the most important and commonly utilized imaging modality 
in ophthalmology and is especially crucial for the diagnosis and management of macular diseases. Each OCT volume 
is typically only available as a series of cross‑sectional images (B‑scans) that are accessible through proprietary soft‑
ware programs which accompany the OCT machines. To maximize the potential of OCT imaging for machine learning 
purposes, each OCT image should be analyzed en bloc as a 3D volume, which requires aligning all the cross‑sectional 
images within a particular volume.

Methods A dataset of OCT B‑scans obtained from 48 age‑related macular degeneration (AMD) patients and 50 
normal controls was used to evaluate five registration algorithms. After alignment of B‑scans from each patient, an en 
face surface map was created to measure the registration quality, based on an automatically generated Laplace 
difference of the surface map–the smoother the surface map, the smaller the average Laplace difference. To demon‑
strate the usefulness of B‑scan alignment, we trained a 3D convolutional neural network (CNN) to detect age‑related 
macular degeneration (AMD) on OCT images and compared the performance of the model with and without B‑scan 
alignment.

Results The mean Laplace difference of the surface map before registration was 27 ± 4.2 pixels for the AMD group 
and 26.6 ± 4 pixels for the control group. After alignment, the smoothness of the surface map was improved, 
with a mean Laplace difference of 5.5 ± 2.7 pixels for Advanced Normalization Tools Symmetric image Normaliza‑
tion (ANTs‑SyN) registration algorithm in the AMD group and a mean Laplace difference of 4.3 ± 1.4.2 pixels for ANTs 
in the control group. Our 3D CNN achieved superior performance in detecting AMD, when aligned OCT B‑scans were 
used (AUC 0.95 aligned vs. 0.89 unaligned).

Conclusions We introduced a novel metric to quantify OCT B‑scan alignment and compared the effectiveness of five 
alignment algorithms. We confirmed that alignment could be improved in a statistically significant manner with read‑
ily available alignment algorithms that are available to the public, and the ANTs algorithm provided the most robust 
performance overall. We further demonstrated that alignment of OCT B‑scans will likely be useful for training 3D CNN 
models.
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Background
OCT background
Optical Coherence Tomography (OCT) is a major techno-
logical breakthrough in medical imaging, after the invention 
of computed tomography (CT) [1] and magnetic resonance 
imaging (MRI) [2]. OCT [3] has revolutionized the field 
of ophthalmology, as it can image tissue non-invasively at 
a micron level resolution, both for the anterior segment 
of the eye [4] and posterior segment of the eye [5]. It takes 
advantage of the different reflectivity of tissues to determine 
the delay time and reflection intensity of the emitted light 
waves, by comparing the reflected and reference light waves 
through a low coherence optical interferometer [6].

Within ophthalmology, OCT is particularly important 
for the diagnosis and management of different retinal dis-
eases, for example age-related macular degeneration (AMD), 
which is the leading cause of central vision loss in persons 
over the age of 50 in the United States [7]. During the acqui-
sition of an OCT image in a patient with AMD or other 
macular diseases, the scan area is centered on the macula, 
which is responsible for central high-resolution vision, and 
light rays are passed through the macula in an anterior–
posterior fashion, producing numerous A-scans. After the 
image acquisition is completed, the A-scans are combined to 
create a single B-scan, which is a cross-sectional image of the 
macula. Within a scan area, multiple B-scans are typically 
captured, though the density of the B-scans within a given 
scan area can be adjusted by the camera operator. In other 
words, every OCT image acquisition produces a 3D image 
volume, composed of multiple B-scans, but the density of 
the B-scans (distance between each cross-sectional image) 
varies depending on the scanning protocol. In retina clini-
cal practice and imaging research involving OCT images, 
each image acquisition (3D volume) is accessed and usually 
viewed one B-scan at a time, but the B-scans typically are 
not aligned. The misalignment of the B-scans does not pose 
a challenge for clinicians, who are primarily interested in the 
presence or absence of pathologies in individual B-scans, but 
this lack of alignment of B-scans could preclude analysis of 
OCT images en bloc as a 3D volume for machine learning 
purposes.

Being able to analyze OCT images en bloc as a 3D volume 
has significant implications for deep learning (DL) neural 
network-based image classification. Within the context of 
DL-based image classification, most published DL stud-
ies on macular OCT only utilized individual 2D B-scans as 
units of data input. Examples include differentiating between 
normal vs. AMD [8] and differentiating between choroidal 

neovascularization vs. diabetic macular edema vs. drusen vs. 
normal [9]. While choosing 2D B-scans within a 3D OCT 
volume as units of data for training and testing simplifies 
data curation and side-steps the complexity of 3D neural 
networks, this is not ideal, as only a portion of the available 
information is utilized. A more advanced strategy involves 
analyzing the entire 3D OCT volume en bloc. However, this 
will require efficient and accurate alignment of the B-scans 
within the same OCT 3D volume in the first place, and a tool 
that can achieve this is not readily available to investigators 
interested in 3D OCT imaging research.

Image alignment
Image alignment [10–12] is a method of optimally register-
ing one or more images onto a target image. Image alignment 
has many practical applications in medical image process-
ing and analysis [13–15]. Medical image alignment can be 
divided into intra-subject (images from the same patient), 
inter-subject (from different patients) and atlas alignment 
(alignment of patient data to an atlas). To align the B-scans 
within the same OCT volume (intra-subject), the spatial 
transformation may be either a rigid or non-rigid deformable 
transformation. In this paper, we focused on three-parame-
ter (one rotation and two translations) rigid alignment, and 
evaluated five medical image alignment methods: Advanced 
Normalization Tools Symmetric image Normalization 
(ANTs-SyN) [16], FMRIB’s Linear Image Registration Tool 
(FLIRT) [17], Insight Toolkit (ITK) [18], Optimized Auto-
matic Registration (OAR) [19], TOADS-CRUISE (TOADS) 
[20], with a cross-correlation cost function.

Our work
For macular OCT images, there is currently no consensus 
on how to assess the correct alignment of individual B-scans 
within a 3D volume. To this end, we propose a novel met-
ric, the en face surface smoothness, which is more specific 
to B-scan-to-B-scan signal change and corroborates with 
the actual anatomy of a human macula, i.e., it is medically 
accurate that the inner retinal surface of a human macula, 
in the absence of surgical manipulation or major trauma, is 
smooth. We aligned the OCT images from all patients in our 
dataset, using the five medical image alignment methods.

The key contributions of our paper are: (1) developed of 
a novel metric, the en face surface smoothness, to quantify 
OCT B-scan alignment that is based on the actual anatomy 
of human maculae, and (2) compared and contrasted five 
commonly-used and readily-available alignment algorithms, 
and identified the algorithm with the best performance to 
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align OCT B-scans within a 3D volume on the current image 
samples. To further demonstrate the utility of OCT B-scan 
alignment, we trained a 3D convolutional neural network 
(CNN) to detect age-related macular degeneration (AMD) 
on OCT images and compared the performance of the 
model with and without B-scan alignment. We chose to use 
AMD as a use case, as AMD is a leading cause of blindness 
in the world and OCT is indispensable in the diagnosis and 
management of AMD.

Methods
Dataset
The dataset [21] used in the alignment experiments was 
acquired at the Noor Eye Hospital in Tehran and consists 
of 50 normal and 48 non-neovascular AMD OCT vol-
umes, acquired with a spectral domain optical coherence 
tomography system [Spectralis, Heidelberg, Germany]. 
For this dataset, the axial resolution is 3.5 μm with a scan 
area of 8.9 × 7.4  mm2. The number of A-scans was either 
512 or 768 and the number of B-scans per OCT volume 
varied from 19, 25, 31, to 61.

The dataset used in the classification experiment 
was acquired at Duke University (230 OCT volumes; 
115 AMD; 115 normal control) [22]. The volumes were 
acquired in a scan area of 6.7 × 6.7 mm centered on the 
fovea with a rapid scan protocol, resulting in volumes of 
1000 × 512 × 100 voxels. The data was randomly split into 
training (56%, N = 130), validation (22%, N = 50) and test 
(22%, N = 50) and was partitioned at the patient level.

B‑scan rigid alignment
We used five commonly used algorithms to align the 
B-scans in each 3D-OCT volume: ANTs, FLIRT, OAR, 
ITK and TOADS. Advanced Normalization Tools Sym-
metric image Normalization (ANTs-SyN) was proposed 
in 2007 by the University of Pennsylvania [23], which 
developed a novel symmetric diffeomorphic optimizer 
for maximizing the cross-correlation in the space of 
topology preserving maps. The FMRIB’s Linear Image 
Registration Tool (FLIRT) alignment algorithm [10, 19, 
24] was proposed in 2000 by the University of Oxford 
and investigated assumptions underlying the problem of 
aligning brain images using a cross-modal voxel similar-
ity measure. The Insight ToolKit image alignment (ITK) 
[18] alignment algorithm was proposed in 2003 by the 
University of Pennsylvania. Optimized automatic align-
ment 3D (OAR) [19] was a method proposed for opti-
mal alignment based on FLIRT. The OAR technique 
specifies a transformation that minimizes a cost function, 
which represents the quality of alignment between two 
images. The TOADS-CRUISE Brain Segmentation Tools 
(TOADS) [25] is a series of software plug-ins developed 
by Johns Hopkins University in 2009 for automatic seg-
mentation of magnetic resonance brain images, which 
was then adopted for OCT alignment with deformable 
registration.

We use {R1,R2,R3, ...,RM−1,RM} to represent the 
B-scan images of a particular patient and  RM/2 is the cen-
tral (foveal) B-scan image. The B-scan alignment starts at 
the center (fovea) and so  RM/2–1 and  RM1/2+1 were aligned 
to  RM/2. The alignment was propagated outward from the 
center and is outlined in Algorithm 1.
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Building the surface map and edge map
After the B-scans were combined (aligned or not aligned) 
into a 3D volume, an en face surface map was created. 
Figure 1 is a schematic representation for how the surface 
smoothness metric was generated. Multiple OCT B-scans 
from the same volume (eye) scan were combined to form 
a 3D cube. The surface map was defined by the distance 
from the top of the data cube to the top of the nerve fiber 
layer (Fig. 1, white arrow). We automatically remove the 
background noise from each B-scan image by the mean-
shift [26] clustering algorithm to locate the nerve fiber 
layer of each B-scan image. The retinal surface located 
by the clustering algorithm was subsequently fit using a 
third order spline with locally weighted smoothing [27] 
(statsmodel.nonparametric.lowess from  https:// www. 
stats models. org) to remove very small jagged edge arti-
facts from the result of the clustering algorithm. Subse-
quently, the surface map was created by finding the nerve 
fiber layer of each B-scan. It is expected that well aligned 
B-scans will result in a smooth surface map (Fig. 1, bot-
tom row) compared to unaligned B-scans (Fig.  1, top 
row). The measure of the smoothness is defined as the 
mean value of the edge map, which is created by applying 
a discrete Laplace operator over the surface map.

The edge map was calculated by applying Laplace edge 
detection algorithm [28] to the surface map. The Laplace 

operator is the simplest isotropic differential operator 
that is rotationally invariant and is defined as:

The mean of the edge map was automatically calculated 
and used as the measure of the smoothness of the surface 
map.

Surface map validation
To validate the algorithm for generating the surface map, 
we generated two sets of surface maps for six patients 
(three AMD and three control patients; 360 B-scan 
images in total). The first set was generated by manual 
annotation of the nerve fiber layer (the surface layer 
of the retina). The second set was generated automati-
cally using the method described above. The difference 
between the two sets of surface maps was represented by 
a histogram.

Neural network model and training
We used the C3D CNN as the backbone of our model 
[29]. The training parameters included 2000 epochs, 
learning rate of 0.0001 (learning rate is divided by 10 
every 50 epochs), Adam optimizer, cross entropy loss 

Laplace(f ) =
∂2f

∂x2
+

∂2f

∂y2

Fig. 1 Multiple OCT B‑scans from the same patient scan (far left) are combined to form a 3D cube. The surface map is defined as the distance 
from the top of the data cube to the top of the nerve fiber layer (white arrow). It is expected that well aligned B‑scans will result in a smooth surface 
map. The measure of the smoothness is defined as the mean value of the difference map which is created by applying a discrete Laplace operator 
over the surface map

https://www.statsmodels.org
https://www.statsmodels.org
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function, and a batch size of 2. The OCT signal was 
normalized to zero mean and scaled to unit standard 
deviation. Image augmentation consisted of a random 
horizontal flip. The proposed method was implemented 
using the Pytorch framework in Python with NVIDIA 
Cuda v10.0 and cuDNN v7.2 acceleration libraries. All 
experiments were performed on a Windows 10 machine 
with an Intel Core i7-7700  K 3.60  GHz CPU and an 
NVIDIA RTX TITAN GPU with 32 GB memory.

Statistical method
We expected the smoothness of the surface map to 
increase, and therefore the difference in the surface map 
to decrease, after B-scan alignment. The mean difference 
in surface map smoothness before and after alignment 
was compared, using paired-sample t-tests with the null 
hypothesis that the two means were the same.

Results
Qualitative results
Figure  2 was created to demonstrate visually the kind 
of artifacts that could be introduced if no B-scan align-
ment is performed, and shows the surface maps from 
four sample control and four sample AMD OCT vol-
umes. Each row represents a separate eye. Each column 
represents a different alignment algorithm: ANTs [16, 30, 
31], FLIRT [32–34], ITK [35–37], OAR [38] and TOADS 
[39, 40]. The left-hand column shows the en face surface 
map using unregistered B-scans. In general, the align-
ment algorithms created a smoother inner retinal surface 
for all eight eyes. In addition, these are our observations. 
First, the horizontal streaks in the images (e.g. Control 
2 and AMD 1) represented significant mis-alignment of 
the B-scans along the Z axis in the OCT volumes. Sec-
ond, the signal intensity differences seen in Control 3 and 

Fig. 2 En face surface maps of OCT volumes. Each row represented a different patient, and each column represented a different alignment 
algorithm. The left most column was created from unregistered B‑scans. (AMD Age‑related Macular Degeneration)
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AMD 3 were due to mis-alignment between the central 
and peripheral regions within the area of the macula that 
underwent imaging. Third, within the same eye, such as 
Control 3, there were significant variations in perfor-
mance between the algorithms. Fourth, black points that 
were typically seen near the edges were artifacts created 
by incorrect surface depth estimates (and quantified as 
“edge errors” in Fig. 4). Of the five algorithms, the ANTs 
alignment algorithm appeared to have both the highest 
degree of surface smoothness and fewest edge errors.

Quantitative results
In this section, the alignment results will be compared 
quantitatively. The inner retinal surface of a human 
macula, in the absence of surgical manipulation or sig-
nificant trauma, should be smooth. Thus, the success of 
the alignment algorithms was quantified by the mean of 
the Laplace difference across an en face surface map. The 
smaller the mean of the Laplace difference, the smoother 
the surface map, and the better the alignment.

Fig. 3 Mean of the Laplace difference of the surface map over all OCT volumes for each of the registration algorithms for control and AMD patients 
(top). The bottom panel only included OCT volumes with 61 B‑Scans. Number above each box is the p‑value from a paired t‑test. (The circles 
in the figure are outliers and are discussed at the end of the paper)
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When all OCT volumes were included for analysis, 
the mean Laplace difference for AMD and Control 
groups without alignment was 27.0 ± 4.2 pixels and 
26.6 ± 4.0 pixels, respectively (Fig.  3, top panel, right). 
Within the AMD group, ANTs and OAR performed the 
best, with a mean Laplace difference of 5.5 ± 2.7 pixels 
and 8.1 ± 4.3 pixels, respectively. The mean Laplace dif-
ference for the FLIRT, ITK and TOADS algorithm was 
16.2 ± 7.4 pixels, 14.7 ± 8.0 pixels, and 15.3 ± 8.5 pixels, 
respectively. For the AMD group, the mean Laplace dif-
ference for all five algorithms was statistically smaller 
than without registration (p < 0.05). Within the con-
trol group, ANTs, and OAR performed the best, with a 
mean Laplace difference of 4.3 ± 1.4 pixels and 6.5 ± 2.2 
pixels, respectively. The mean Laplace difference for the 
FLIRT, ITK and TOADS algorithm was 12.9 ± 6.1 pix-
els, 11.8 ± 5.3 pixels, and 11.8 ± 4.7 pixels, respectively. 
Similarly for the control group, the mean Laplace dif-
ference for all five algorithms was statistically smaller 
than without registration (p < 0.05).

The data set used in this paper contained OCT vol-
umes with varying B-scans densities, from 19 to 61 
line scans. The higher the number of B-scans within an 
OCT volume, the more information it contains. Hence, 
we performed the same quantitative analysis, as above, 
to validate our approach specifically for high-density 
OCT images (OCT volumes with 61 B-scans) that are 
typically used in clinical practice or research (Fig.  3, 
bottom panel).

When only OCT volumes with 61 B-scans were 
included for analysis, the mean Laplace difference for 
the AMD and control groups without alignment was 
23.1 ± 2.4 pixels and 25.1 ± 3.2 pixels, respectively. 
Within the AMD group, ANTs and OAR performed the 
best, with a mean Laplace difference of 3.5 ± 0.8 pixels 
and 4.2 ± 0.9 pixels, respectively. The mean Laplace dif-
ference for the FLIRT, ITK and TOADs algorithm was 
11.7 ± 3.8 pixels, 9.6 ± 3.3 pixels, and 9.2 ± 2.3 pixels, 
respectively. For the AMD group, the mean Laplace dif-
ference for ANTs, OAR and TOADS was statistically 
smaller than without registration (p < 0.05). Within the 
control group, ANTs and OAR performed the best, 
with a mean Laplace difference of 4.0 ± 1.5 pixels and 
6.0 ± 2.4 pixels, respectively. The mean Laplace differ-
ence for the FLIRT, ITK and TOADS algorithm was 
12.4 ± 2.5 pixels, 9.6 ± 3.9 pixels, and 11.7 ± 2.7 pixels, 
respectively. For the control group, the mean Laplace 
difference for all five algorithms was statistically smaller 
than without registration (p < 0.05).

Figure  4 shows the edge errors for each algorithm 
for both the AMD and control groups. The top panel 
of Fig.  4 shows the results when all OCT volumes 
were included. The bottom panel of Fig.  4 shows the 

results when only OCT volumes with 61 B-scans 
were included. Overall, TOADS performed the best. 
For TOADS, the mean number of edge errors was 
3586 ± 812, 3075 ± 829, 848 ± 346, and 701 ± 418 for the 
AMD (all OCT volumes), control (all OCT volumes), 
AMD (OCT with 61 B-scans only) and control (OCT 
with 61 B-scans only) group, respectively.

Surface map validation results
To validate the accuracy of our method for automatic 
surface map generation, we calculated the differ-
ence between manually generated surface maps and 
automatically generated surface maps, using B-scan 
images from 6 eyes. The difference was represented 
by a histogram and measured in pixels (Fig.  5). The 
mean and standard deviation in pixels of the difference 
between the six sets of surface maps was 0.28 ± 0.1, 
1.4 ± 1.9, 0.45 ± 0.61, 0.5 ± 0.44, 0.99 ± 1.18, 1.21 ± 2.14, 
respectively.

Algorithm speed
The performance was quantified by the mean time (in 
milliseconds) to register a pair of B-scans images over all 
B-scans within the same OCT volume (Fig. 6). The fast-
est algorithm was OAR at approximately 2500  ms per 
pair. The slowest algorithm was FLIRT at approximately 
5,500 ms.

Classification performance with and without alignment
We trained a 3D CNN to distinguish between normal 
and AMD OCT volumes. When our model was trained 
with B-scans aligned with ANTs, our model demon-
strated superior performance (AUC 0.95 aligned vs. 0.89 
unaligned; Table 1).

Discussion
In this paper, we compared five commonly used align-
ment algorithms to register B-scans within an OCT vol-
ume, and tested our approach on a publicly-available 
dataset that contained both AMD and control patients. 
Overall, all five algorithms improved alignment, as meas-
ured by the mean Laplace difference of the en face surface 
map. Considering the results of all experiments, ANTs 
performed the best across all groups (AMD vs. control, 
all OCT volumes vs. OCT volumes with 61 B-scans only) 
in terms of producing the smoothest surface maps. In 
addition, we demonstrated that training a 3D CNN with 
B-scans aligned by ANTs produced a more robust model 
in detecting AMD on OCT volumes, as compared to 
training with unaligned B-scans.
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Although ANTs did not produce the smallest number 
of edge errors, the proportion of edge errors as a mean 
percentage of total number pixels was still low at 0.04%. 
Hence, we believe that of the commonly available image 
alignment algorithms, ANTs should be used to register 
non-aligned B-scans within the same OCT volume. In 
image alignment, there are two options: rigid body trans-
formation and nonlinear transformation [41]. For this 
paper, we only used rigid alignment methods, as many 
macular diseases, such as neovascular age-related macu-
lar degeneration and diabetic macular edema, manifest as 
perturbation of the retinal laminations on OCT imaging. 

We specifically avoided using non-linear warping tech-
niques, as non-linear warping could inadvertently pro-
duce perturbation of the retinal layers and introduce 
artifactual pathologic features.

The number of B-scans within the OCT volumes var-
ied from 19 to 61 for the dataset we used. That is, with 
the same scan area, the number of cross-sectional images 
varied from 19 to 61, and the distance between individ-
ual B-scans was inversely related to the number (density) 
of B-scans. The strength of our paper lies in the valida-
tion of our approaches using OCT volumes with differ-
ent B-scan densities, as in real-world clinical practice, 

Fig. 4 Mean number of edge errors over all OCT volumes for each of the registration algorithms for control and AMD patients (top). The bottom 
panel only included OCT volumes with 61 B‑Scans
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the B-scan density is often variable and determined by 
operator or scanning protocol preferences. In addition, 
the algorithms investigated in our study are already read-
ily available to the public, so our findings are relevant to 
the broader research community.

Our manuscript was motivated by the fact that 
when OCT volumes are exported from commercially-
available viewing software, an OCT volume is typi-
cally not exported en bloc but as a series of separate 
B-scans. However, 3D CNNs, one of the cutting-edge 
model architectures, require training data input in the 
form of 3D image volumes. Meaning, after the initial 
data export, the separate OCT B-scans will have to be 
re-combined into a 3D volume, before a 3D CNN can 
be trained. However, in the process of re-combining 
the B-scans, artifacts could be introduced if B-scan 
alignment is not performed. For example, if the reti-
nal pigment epithelium (RPE) is not aligned between 
adjacent B-scans, an artifactual “RPE break” could 
be introduced. To demonstrate the utility of aligning 
OCT B-scans, specifically within the context of train-
ing 3D CNN models for DL-based image analysis, we 
trained a model to detect AMD in 3D OCT volumes. 

Fig. 5 (Left) visualization and comparisons of the surface maps created manually and automatically. (Right) Histograms showing the difference 
between each pair of surface maps in the number of pixels

Fig. 6 Average registration time in milliseconds per pair of B‑scans 
for each algorithm

Table 1 Comparison of 3D CNN model performance with and 
without B‑scan alignment in distinguishing between normal and 
AMD OCT volumes

Sensitivity (95% 
confidence 
interval)

Specificity (95% 
confidence 
interval)

AUC (95% 
confidence 
interval)

Unaligned 0.88 (0.71, 0.92) 0.90 (0.73, 0.93) 0.89 (0.89, 0.94)

Aligned 0.93 (0.75, 0.94) 0.94 (0.76, 0.96) 0.95 (0.94, 0.98)
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We compared the performance of our model, with 
and without B-scan alignment, and demonstrated that 
B-scan alignment produced a more robust model. Our 
data provides proof-of-concept evidence that align-
ing B-scans could be broadly useful for training any 3D 
CNNs that involve 3D macular OCT volumes.

Limitations
Our paper has several limitations. First, none of the 
five algorithms included in this study were originally 
developed for OCT B-scan registration, so an algo-
rithm designed from the ground up for this specific 
purpose may yield even better results. Second, the 
range of pathologies included in this OCT dataset was 
limited, as only control (normal) and AMD patients 
were included. Specifically, drusen, defining features of 
AMD, are located in the outer retina and do not sig-
nificantly perturb the smoothness of the inner retinal 
surface. For conditions that introduce significant inner 
retinal surface perturbation, such as trauma and local-
ized irregular epiretinal membrane, our novel metric of 
surface smoothness may not be applicable.

Conclusions
In this paper, we introduced a novel metric to quantify 
OCT B-scan alignment and compared the effectiveness of 
five alignment algorithms. We confirmed that alignment 
could be improved in a statistically significant manner with 
readily available alignment algorithms that are available 
to the public, and the ANTs algorithm provided the most 
robust performance overall.
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