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Abstract 

Telemedicine, the use of telecommunication and information technology to deliver healthcare remotely, has evolved 
beyond recognition since its inception in the 1970s. Advances in telecommunication infrastructure, the advent 
of the Internet, exponential growth in computing power and associated computer-aided diagnosis, and medical 
imaging developments have created an environment where telemedicine is more accessible and capable than ever 
before, particularly in the field of ophthalmology. Ever-increasing global demand for ophthalmic services due to pop-
ulation growth and ageing together with insufficient supply of ophthalmologists requires new models of healthcare 
provision integrating telemedicine to meet present day challenges, with the recent COVID-19 pandemic providing 
the catalyst for the widespread adoption and acceptance of teleophthalmology. In this review we discuss the history, 
present and future application of telemedicine within the field of ophthalmology, and specifically retinal disease. We 
consider the strengths and limitations of teleophthalmology, its role in screening, community and hospital manage-
ment of retinal disease, patient and clinician attitudes, and barriers to its adoption.

Introduction
Telemedicine is the use of telecommunication and 
information technology for the purpose of providing 
remote health assessments and therapeutic interven-
tions [1]. It may be synchronous, involving real-time 
interaction amongst participants separated in space via 

communication technology, or asynchronous (“store-
and-forward”), separating the collection of medical data 
and its review in time and space [2]. It may involve com-
munication between healthcare providers seeking clinical 
guidance and support from other healthcare providers 
(provider-to-provider telemedicine), or between remote 
healthcare users seeking health services and healthcare 
providers (client-to-provider telemedicine) [3]. The evo-
lution of telemedicine since its inception in the 1970s, 
involving landline telephones and televisions “cumber-
some to move about, probably too expensive to have 
in every examination room, with almost one-third of 
consults encountering technical difficulties” [4], would 
render it almost unrecognisable in its present form to 
those early pioneers. The advent of the Internet, wire-
less network protocols, broadband cellular networks, and 
high-resolution digital photography, together with the 
exponential growth in computing power that has made 
computer-aided diagnosis (CADx) possible via artificial 
intelligence (AI), machine learning (ML) and its subset 
deep learning (DL), has created an environment where 
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telemedicine can equal and surpass traditional face-to-
face medicine in terms of patient safety, outcomes and 
user satisfaction, with the potential to make healthcare 
more equitable, accessible and efficient than ever before 
[5]. The recent COVID-19 pandemic has provided addi-
tional stimulus to accelerate the development and adop-
tion of telemedicine in routine clinical practice. In no 
field is the potential of telemedicine more evident than 
ophthalmology, and in particular retinal disease—the 
plethora of image-based investigations in retinal clini-
cal practice makes it uniquely suited to a telemedicine 
approach. This review will discuss the history, current 
and future application of telemedicine within ophthal-
mology and in particular the field of retina.

Telemedicine in the pre‑hospital setting
Screening
The impact of telemedicine in ophthalmology is most 
evident in its established role worldwide in the screening 
of retinal disease, namely diabetic retinopathy (DR) and 
retinopathy of prematurity (ROP).

Diabetic retinopathy
Diabetes mellitus (DM) affects approximately half a bil-
lion people worldwide [6], with a third of these suffer-
ing from diabetic retinopathy [7]. Amongst people over 
50  years old, an estimated 861,000 people are blind 
and 2.95 million people moderately to severely vision 
impaired as a result [8]. DR is archetypal for a condition 
meeting the criteria set by Wilson and Jungner of a dis-
ease amenable to screening [9]; it is an important health 
problem, possesses a detectable asymptomatic phase, has 
an acceptable, safe and precise diagnostic test (retinal 
photography), and effective interventions exist which are 
more beneficial earlier in the disease process.

The creation of a standardised definition of refer-
rable disease has been vital to the efficacy of screen-
ing programmes worldwide and their adaptability to an 

asynchronous telemedicine approach. The Arlie House 
Symposium in 1968 was the first to objectively define 
and classify DR through standardised fundus photogra-
phy [10]. A modified form of the Arlie House Classifica-
tion based on seven field 30° stereoscopic colour fundal 
photographs (CFP) was used in the first landmark trial 
to demonstrate the reduction of severe vision loss in DR 
through panretinal photocoagulation [11], and later, the 
Early Treatment Diabetic Retinopathy Study (ETDRS) 
used a further modified form (ETDRS grading criteria) 
which has been accepted as the gold standard for detec-
tion of referable disease [12]. However, the imaging 
requirements of the ETDRS criteria are not feasible for a 
screening setting due to the staff training, patient coop-
eration, and time required to attain stereo seven field 
CFP imaging in every patient. Adaptations to reduce test 
demands whilst maximising test sensitivity and specific-
ity have therefore been made by screening programmes 
worldwide. The American Telemedicine Association 
(ATA) has developed four categories of validation for 
DR telemedicine screening programmes depending on 
the extent to which programmes can perform against the 
ETDRS gold standard (Table 1) [13]. In 1995, The British 
Diabetic Association put forward a consensus statement 
from clinicians that a screening test for referable DR 
should have minimum sensitivity of 80% and specificity 
of 95% [14]. Two field mydriatic 45° CFP (centred on the 
optic disc and macula) meets these criteria, with sensitiv-
ity 80.2% and specificity 96.2% [15]—the ease and speed 
of acquisition of this approach, together with its accept-
ability to patients, has made this approach the most com-
mon in screening programs worldwide.

The first recognised DR screening programme was 
developed in Iceland in 1980 for patients with insulin-
dependent DM [16–18]. However, this programme 
involves annual fundus examination and DR grading by 
an ophthalmologist in addition to CFP acquisition rather 
than a telemedicine approach. In 1990, DR screening 

Table 1 American Telehealth Association DR telehealth program categories of validation [13]

Validation category Capability

1 Separation of patients into two categories:
1) No or minimal DR (ETDRS level ≤ 20)
2) More than minimal DR (ETDRS level > 20)

2 Separation of patients into two categories:
1) Non-sight-threatening DR
2) Sight-threatening DR (diabetic macular edema (DME), severe non-proliferative DR (ETDRS level ≥ 53), 
or proliferative DR (ETDRS level ≥ 61)

3 Identification of ETDRS defined levels of non-proliferative DR (mild, moderate, severe), proliferative DR 
(early, high-risk), and DME with sufficient accuracy to determine follow-up and treatment strategies 
at a level equivalent to dilated clinical retinal examination

4 Ability to match or exceed the ability of ETDRS photos to identify and determine severity of DR and DME
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via four field 45° CFP acquisition by mobile fundus pho-
tography teams distributed around primary and sec-
ondary healthcare centres (with subsequent analysis by 
ophthalmologists) was introduced in Stockholm, Swe-
den, which resulted in a 45% decrease in the incidence 
of blindness (visual acuity (VA) < 1.3 LogMAR)—one of 
the first examples of DR screening via telemedicine [19]. 
Presently, numerous telemedicine-based DR screening 
programmes exist worldwide. The constituent countries 
of the United Kingdom (UK) have the largest national 
programmes presently [20]—the asynchronous store-
and-forward platforms of England, Scotland, Wales 
and Northern Ireland, involving acquisition of two field 
mydriatic 45° CFP by trained technicians and later grad-
ing of photos by graders and referral to hospital eye ser-
vices where indicated, has been successful in reducing 
rates of sight loss secondary to DR such that in 2010, DR 
was no longer the primary cause for blindness registra-
tion in the UK for the first time in 50 years [21]. Singa-
pore possesses the second largest national DR screening 
programme, with the Singapore Integrated Diabetic 
Retinopathy Programme (SiDRP), commenced in 2010, 
having screened over 600,000 diabetics in total. CFPs are 
captured at multiple places including polyclinics and pri-
mary care providers, and then sent to a centralised read-
ing center where photographs are graded synchronously 
(within one business day at most), and a standardised 
referral protocol followed. Cost savings from this model, 
versus the previous approach of review of CFPs by family 
physicians within the polyclinic in which they were cap-
tured, is estimated to be $144 per person [22]. Although 
there is no national screening programme in the United 
States of America, several large validated regional pro-
grammes exist. Examples include the DR screening 
programme run by the Kaiser Permanente, the largest 
private health insurer in the US, and the Indian Health 
Service-Joslin Vision Network (IVS-JVN) Teleophthal-
mology Program, the largest ATA Category 3 program in 
the USA. The IVS-JVN has performed over 226,333 stud-
ies on diabetics within the American Indian and Alaska 
native population thus far [23–25]. Both programmes 
utilise asynchronous centralised reporting of CFP, two 
field in the case of Kaiser Permanente and five field for 
the JVN.

The aforementioned DR screening programmes all 
require significant infrastructure to enable standard-
ised CFP acquisition at designated centres for the rel-
evant population, with means to rapidly transfer images 
to reading centres. Investment in such an infrastructure 
may be prohibitively expensive, particularly in the devel-
oping world. Alternative methods of image acquisition 
utilising equipment that is highly portable, user-friendly 
and potentially already available to patients is therefore 

attractive, as it might enable access to DR screening 
even in resource-poor settings. Smartphone ophthal-
moscopy, the use of an in-built smartphone camera to 
obtain retinal images, has been shown to be viable in this 
role—a prospective comparison performed in India dem-
onstrated high agreement between a smartphone-based 
portable imaging system (Remidio Fundus on Phone) and 
four field CFP in detecting both any DR and sight-threat-
ening DR in 2015 [26].

One major limitation preventing widespread adoption 
worldwide of DR screening programmes is the need for 
a large number of trained graders in reading centres to 
analyse the large volume of CFP images generated by 
screening programmes. Automated analysis of retinal 
images for referable diabetic retinopathy is therefore an 
attractive proposition as it would render this require-
ment redundant. The first paper in this field, published 
in 1973, demonstrated computer-aided detection (CADe) 
of retinal vascular contour lines [27]. Subsequent to 
CADe, digital photography and increased computing 
power facilitated the development of computer-aided 
diagnosis (CADx) systems which qualitatively detect fea-
tures of DR, calculate disease probability, and risk stratify 
disease. Earlier CADx algorithms utilised thresholding, 
edge detection, processing and filters to identify disease 
[28], with more advanced models using ensemble-based 
approaches [29], multi lesion approaches or content-
based image retrieval [30]. An automated retinal image 
analysis system (ARIAS) developed by Abràmoff et al. in 
2008 and refined in 2013 demonstrated 96.8% sensitivity 
and 59.4% specificity in detecting referrable DR [23–25, 
31, 32]. The iGradingM ARIAS is presently used in a cat-
egory 1 grading (disease/no disease) role within the Scot-
tish DR screening programme, having been extensively 
validated [33, 34]. It has been evaluated to have a sensi-
tivity to detect DR of 97.8% and specificity of 41.2% [35]. 
Category 1 grading is labour intensive due to the high 
number of CFPs generated by screening programmes, 
and hence its automation has significant cost-saving 
potential—it has been estimated that automated grading 
saves £212,695 per 180,000 screened in Scotland [36].

Deep learning (DL), a subset of machine learning using 
multiple layers to progressively extract higher-level fea-
tures from a raw input, usually via training of a convolu-
tional neural network (CNN), has facilitated the creation 
of CADx algorithms which are rapidly superseding the 
previously mentioned approaches. Although the concept 
of DL has been present since 1967 [37], recent advances 
in computing power, large volumes of digital data, and 
publically available pre-trained CNNs have led to the 
current explosion in research utilising this approach in 
healthcare [38–42]. DL has already been shown to per-
form equivalently to humans in the detection of disease 
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from medical imaging [43–47]. Abramoff et al. enhanced 
their previous ARIAS by integrating DL, renaming it 
IDx-DR, to achieve 96.8% sensitivity and 87% specific-
ity in detecting referrable DR in 2016 [48]. IDx-DR has 
since been validated against multiple datasets both ret-
rospectively [49] and prospectively on 900 patients at 10 
primary care sites in the USA (sensitivity 87.4%, speci-
ficity 89.5%), which led to it becoming the first artificial 
intelligence-based medical device to receive US Food 
and Drug Administration (FDA) approval for marketing 
in 2018. In 2020, The EyeArt Automated DR Detection 
System was the second AI-based DR grading programme 
to become FDA approved, after it demonstrated 95.5% 
sensitivity and 85% specificity in detecting referrable DR 
and 95.1% sensitivity and 89% specificity in detecting 
vision-threatening DR in a prospective multicentre study 
across fifteen US study centres [50]. EyeArt has also been 
used in combination with smartphone-based fundal pho-
tography in India to provide DR screening with minimal 
infrastructural requirements [51]. Code-free DL models 
based on automated machine learning (AutoML), a set of 
cloud-based tools that automates AI model development, 
provides prerequisite hardware, and offers an interface 
requiring no coding expertise, have been demonstrated 
to detect referrable DR from five field CFPs captured 
with handheld portable cameras within a regional screen-
ing programme in the Philippines with 94% sensitivity 
and 97% specificity on external validation [52]. Optos 
Plc, in partnership with Google LLC and Verily Life Sci-
ences LLC, is seeking to bring to market its DL-based DR 
detection algorithm utilising images from its ultra-wide-
field (UWF) confocal scanning laser pseudocolour retinal 
imaging devices [53]. Clinical trials of this algorithm are 
ongoing. Real-world impact from DL-based DR screening 
programmes has been demonstrated in Thailand, where 
a prospective interventional cohort study comparing a 
DL-based programme developed by Google LLC [42] 
with retinal specialist graders within the Thai healthcare 
system screened 7651 diabetic patients. The DL-based 
programme achieved 94.7% accuracy, 91.4% sensitivity 
and 95.4% specificity in detecting vision-threatening DR, 
equivalent to the specialist graders in terms of accuracy 
and specificity, and statistically superior in terms of sen-
sitivity. This study also demonstrated the challenges of 
implementing DL systems within low and middle-income 
countries, including barriers to integration within exist-
ing workflows which may be paper-based, poorer referral 
tracking systems, and higher proportions of ungradable 
images (secondary to cataract, camera operator error or 
faulty camera equipment) [54].

A potential concern of DL models is their limited ability 
to detect pathology aside from the usually single disease 
for which they have been trained. A Singapore-based DL 

algorithm, named SELENA + , has attempted to address 
this concern by training the model to recognise not only 
referrable DR but also glaucoma and age-related macu-
lar degeneration (AMD). Having been trained on almost 
500,000 images, it has been reported to have 90.5% sensi-
tivity, 91.6% specificity and 0.936 area under the receiver 
operator curve (AUC) in detecting referrable DR within 
the SiDRP, with subsequent external validation in six 
countries. It could simultaneously detect possible glau-
coma with sensitivity 96.4% and specificity 87.2%, and 
AMD with sensitivity 93.2% and specificity 88.7% [55]. 
SELENA + has now been deployed to the entire SiDRP in 
a semi-automated workflow, where cases are categorised 
as non-referable or referrable by the algorithm, with only 
those identified as referrable being subsequently manu-
ally graded by human trained technicians [56].

Retinopathy of prematurity
Retinopathy of prematurity (ROP) is a proliferative reti-
nal vascular disease of preterm low birth weight neonates 
that is the leading cause of childhood blindness [57]. It is 
estimated to affect 68% of neonates with birth weight less 
than 1251  g, with more than a third of such cases clas-
sified as severe [58, 59]. Since the landmark CRYO-ROP 
study in 1988, ROP has become a treatable disease, with 
successful treatment being dependent on early recogni-
tion of sight-threatening features such as plus disease [60, 
61]. Screening programmes for preterm low birth weight 
neonates have therefore become vital in reducing rates of 
blindness from ROP [62–65], and the American Academy 
of Pediatrics recommends screening of all infants with a 
birth weight of ≤ 1500 g or a gestational age of 30 weeks 
of less [66]. Traditional screening programmes require 
frequent dilated fundal examination with binocular indi-
rect ophthalmoscopy (BIO), often with scleral indenta-
tion, by ophthalmologists with substantial subspecialty 
experience. Several limitations to this approach are 
apparent: first, there is already an insufficient paediatric 
ophthalmology workforce in the developed world to cope 
with screening demand [67], and this problem is mag-
nified in the developing world where demand is greater 
and the workforce is ever smaller [68, 69]. Secondly, as 
preterm infant survival improves through advances in 
neonatal medicine, the population requiring screening is 
likely to continue to increase worldwide for the foresee-
able future [70].

Telemedicine approaches to ROP screening overcome 
several of the limitations of traditional screening, and 
are likely to continue to play a vital role in screening 
programme delivery in the developing and developed 
world in future. Requirements for telemedicine screen-
ing include a portable neonatal fundal imaging device 
such as the RetCam range of cameras (Natus Medical 
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Inc., Pleasanton, California, USA) or 3nethra Neo 
(Forus Health), trained camera operators, infrastruc-
ture to transfer imaging data, and a system for grad-
ing images and communicating results to clinicians. 
The Stanford University Network for Diagnosis of 
ROP (SUNDROP) initiative is an example of a success-
ful real-world telemedicine approach to ROP screen-
ing. Based in 6 neonatal intensive care units (NICU) in 
California, USA, it screened 608 preterm infants over 
6 years. NICU nurses were trained to capture at least 5 
wide-angle CFPs per eye using the RetCam II/III. These 
images were transferred via secure routes to a single 
reading centre where ROP specialist ophthalmologists 
would grade the images. Grading via telemedicine was 
compared with a gold standard of BIO examination of 
the same infants by specialised paediatric ophthalmolo-
gists within one week of discharge, with remote inter-
pretation demonstrating sensitivity of 100%, specificity 
of 99.8%, positive predictive value of 95.5% and nega-
tive predictive value of 100% for treatment-warranting 
ROP (TW-ROP) [71]. In India, the Karnataka Inter-
net Assisted Diagnosis of ROP (KIDROP) programme 
trained technicians to capture and grade CFPs using 
the RetCam Shuttle across 36 NICUs from 2011 to 
2015, screening 7106 infants. Images were also securely 
transferred for centralised grading by ROP experts. It 
found an overall ROP incidence of 22.4% and TW-ROP 
incidence of 3.6%. The study demonstrated the feasibil-
ity of a telemedicine screening approach in a rural envi-
ronment in the developing world, and also the potential 
for non-expert ophthalmologists to grade images, 
although a significant limitation of the study was that 
no comparison with gold standard live BIO examina-
tion was reported [72].

A limitation of the above telemedicine programmes is 
the need for trained diagnosticians to grade the numer-
ous fundal images generated by ROP screening. Auto-
mated detection of TW-ROP is a potential solution 
in  situations where there are insufficient trained grad-
ers, a situation which may be encountered particularly 
in the developing world. DL algorithms to detect plus 
disease, a useful marker of TW-ROP, have been cre-
ated to fulfil this role, with several models validated 
and shown to have high diagnostic accuracy [73–78]. 
Wagner et  al. have also demonstrated the potential of 
utilising pre-trained CNNs to develop code-free deep 
learning models to detect pre-plus and plus disease 
[79]. Safe real-world deployment of these algorithms 
is yet to occur, with potential barriers including train-
ing of models on specific ethnic groups limiting their 
generalisability to other populations, and poor perfor-
mance of algorithms on images captured by devices 
other than that on which they were trained [80].

Referral refinement
Ophthalmologist workload is increasing globally, par-
ticularly in the field of retina, as a result of demographic 
changes and increasing prevalence of DM, together with 
a low number of ophthalmologists per capita: in the 
developed world, the population aged over 60 is grow-
ing at twice the rate of the number of ophthalmologists 
[81]. In addition, the increasing availability of OCT and 
ultra-widefield imaging in the optometrist setting has 
resulted in increased detection of asymptomatic retinal 
conditions and consequent specialist referrals [82]. In the 
National Health Service (NHS) in the UK, there were 7.5 
million attendances to ophthalmology clinics from 2021 
to 2022, the highest number for any specialty [83]. There 
is therefore a clear need to accurately triage referrals to 
hospital eye services (HES) in order to avoid unnecessary 
referrals and associated waste of tertiary care resources, 
whilst safely prioritising cases that do need hospi-
tal review according to clinical urgency. Telemedicine 
approaches to referral refinement have demonstrated 
the ability to meet this need. A real-world retrospective 
cohort study based in Denmark demonstrated the benefit 
of referral refinement through introduction of a telemed-
ical service intermediary between community optom-
etrists and HES: all patients whom optometrists from the 
largest optometrist chain in Denmark wished to refer to 
HES had their examination and investigation findings 
uploaded to a cloud-based system (Optoflow, Kide, Fin-
land). This data was then reviewed remotely by a group 
of consultant ophthalmologists who determined most 
appropriate follow-up. Of 9938 patients referred to HES 
between 2018 and 2019, the telemedicine service referred 
only 19.5% to HES, whilst 14.4% required no follow-up 
and 66.1% required follow-up either with the referring 
optometrist or the telemedicine service [84]. In the UK, 
a retrospective cohort study utilised a similar pathway to 
refine optometrist referrals to HES for retinal disease and 
found that only 14% required urgent HES review, 34% 
required routine HES review, and 52% required no HES 
referral at all [85].

Referral refinement via telemedicine, with avoidance of 
unnecessary referrals and more timely review of urgent 
referrals, has clear potential benefits as discussed above. 
However, there is a need for improved safety data to 
ensure that referrals designated via telemedicine as not 
requiring HES review do not come to harm from incor-
rect triage (false negatives). In addition, the above refer-
ral refinement programmes are resource-intensive, with 
robust and secure cloud-computing software and net-
working requirements to link referrers and HES, together 
with dedicated ophthalmologist time to triage a sig-
nificant number of referrals, which may limit its imple-
mentation in the developing world. In future, automated 
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referral refinement may reduce manpower requirements, 
and video consultations with referred patients may 
increase accuracy and safety of triage outcomes [86].

Portable devices
The use of portable screening devices in telemedicine has 
been demonstrated to be effective in early detection and 
triaging of chronic eye diseases [87]. Studies have also 
shown that early detection of such diseases is associated 
with favourable resource utilisation and costs [88–90]. 
Taylor et al. estimated that there is a five-time cost sav-
ings return to the community in terms of productivity 
and quality of life from primary prevention of eye disease 
[91]. Despite the evidence that early detection of chronic 
eye disease results in better outcomes, there is a lack of 
data on the optimal eye screening model which can be 
partly attributed to limitations of current diagnostic 
devices and models of cost-effectiveness of eye screen-
ing. In a survey of 104 family physicians in Singapore, 89 
(86%) felt that teleophthalmology would reduce the num-
ber of unnecessary referrals to a specialist but cited a lack 
of diagnostic equipment as a major barrier to implemen-
tation [92].

Telemedicine in the hospital setting
The ‘virtual clinic’ (VC), defined by the Royal College of 
Ophthalmologists, UK, as patient-clinician consultations 
in which the face-to-face (F2F) interaction is removed 
[93], is an innovation that has transformed patient care 
pathways over the past decade, and will continue to do 
so for the foreseeable future [94]. It has been made possi-
ble in the field of ophthalmology by the increasing avail-
ability and quality of diagnostic equipment, upskilling 
of technicians to use such equipment, methods to store 
and securely forward results to reviewing clinicians, and 
secure networked communication channels to act on 
findings and communicate plans to patients in a timely 
manner. The virtual clinic has been shown to comple-
ment, and often replace, traditional live F2F clinics in a 
significant proportion of patient interactions with HES, 
simultaneously improving efficiency of HES resource use, 
maintaining patient safety, and improving inclusivity and 
equality of care provision [95–99]. The ability of the vir-
tual clinic to generate additional HES capacity is vital, as 
the number of referrals from community care providers 
continues to increase for the reasons mentioned in the 
previous section.

In the UK, VCs were first introduced in the field of 
glaucoma. Rathod et al. demonstrated the safety of a vir-
tual glaucoma clinic by comparing diagnoses made from 
asynchronous review of nurse examination and inves-
tigations with F2F diagnoses, showing good agreement 
between the two methods, and 94.4% sensitivity and 

86.7% specificity for diagnosis of glaucoma via the virtual 
pathway [100].

Retinal services are particularly suited to the VC model 
in light of the emergence of advanced retinal imaging 
methods, such as high resolution widefield and ultra-
widefield colour fundus imaging and OCT, which have 
revolutionised and become the cornerstone of diagno-
sis and monitoring of retinal disease. Several examples 
of successful retinal VC pathways have been published, 
with two main models described. Most commonly, the 
pathway consists of patient completion of a standardised 
questionnaire to determine relevant history, capture of 
visual acuity (VA), IOP, and imaging in the virtual clinic 
with patients returning home thereafter, asynchronous 
clinician review of results, and written or telephone com-
munication of the subsequent plan [95]. Alternatively, the 
same pathway is followed but with the addition of assess-
ment for ‘red flag’ features during virtual assessment that, 
if present, trigger same day F2F review [99]. The potential 
benefits of the latter approach include increased safety by 
managing presentations requiring same-day intervention 
appropriately, and avoidance of duplicate appointments 
in rapid succession for such cases. However, such a path-
way requires a F2F clinic to be running concurrently, and 
may place excess strain on an already full capacity F2F 
clinic with an unpredictable number of extra patients to 
review. VCs may be ‘single-disease’, facilitating an algo-
rithmic approach to data capture and assessment, poten-
tially by trained graders rather than ophthalmologists, 
or ‘mixed-pathology’, facilitating increased scope of suit-
able cases for virtual review and reduced burden on F2F 
clinics.

Moorfields Eye Hospital (MEH) NHS Foundation Trust 
has implemented virtual medical retina (MR) clinics 
since 2015. MEH South Division has reported outcomes 
of mixed-pathology virtual clinic review of retinal refer-
rals (either external from the community or internal 
referrals from other ophthalmic subspecialties) triaged 
as low-risk, with 1729 patients reviewed between 2016 
and 2017. Key findings include a 45.5% discharge rate and 
37.1% continued VC follow-up rates for external referrals 
after first VC, with only 17.4% of patients being brought 
for F2F assessment subsequent to first VC review. Of 
those brought for F2F review, 34.7% of these were due to 
poor image quality and 20.2% due to the need for urgent 
treatment [95]. A follow-up study by the same group 
demonstrated that between first and second VC appoint-
ment, there was no reduction in mean VA or mean DR 
severity, suggesting that it is safe to keep selected patients 
within the VC setting without need for intermittent F2F 
appointments [96].

Single-disease VCs have also shown significant prom-
ise and real-world success. A randomised clinical trial 
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of VC vs F2F screening and monitoring of neovascular 
AMD demonstrated that referral-to-treatment time was 
the same for both approaches, and although mean recur-
rence-to-treatment time was longer for VC-monitored 
patients than F2F (13.6 versus 0.04  days), this did not 
result in any difference in mean VA between the groups 
at the end of the trial [101]. Diabetic eye disease has also 
been shown to be amenable to the VC approach: a ret-
rospective cohort study at MEH over a 4-year period 
assessed the proportion of referrals to HES from the Eng-
land Diabetic Eye Screening Programme that were suited 
to VC review, and compared outcomes from VC versus 
F2F pathways. Of 12,563 newly referred patients, 70.7% 
were found to be suitable for VC, although only 18.4% 
were referred to VC due to capacity constraints. Urgent 
referrals were automatically directed to the F2F pathway. 
The mean time from routine referral to assessment was 
shorter for VC than F2F clinics (68 versus 80.9 days), as 
was the time from referral to discharge at first appoint-
ment where appropriate (71.3 versus 86.5  days). For 
patients requiring intravitreal injection therapy, there was 
no statistically significant difference in mean time from 
referral to first injection. The study authors conclude 
that VC review of appropriately selected DR referrals 
improves efficiency of MR services without compromis-
ing patient safety [97].

The COVID-19 pandemic has emphasised the 
strengths of the VC model and accelerated its adoption 
[102]. The high throughput of VCs helps to address the 
significant backlog of referrals resulting from delayed 
presentation and reduced clinic capacity during the 
pandemic. Predictable and streamlined patient flow 
with shorter patient journeys within VCs than F2F clin-
ics has facilitated social distancing within waiting areas 
[99]. Reduced F2F interaction time in the VC facilitates 
reduced time for potential transmission of airborne dis-
eases between patients and staff.

Despite strong evidence of the benefits of the VC 
pathway to HES and patients, there remain barriers to 
its widespread adoption. A major limitation is the high 
initial outlay in facilities, diagnostic equipment, secure 
networked data storage and transfer solutions meeting 
information governance requirements, and hiring and 
training of technicians required to set up a high-capac-
ity VC system. In healthcare systems where commer-
cial or state reimbursement are the primary source of 
HES funds, this problem can be exacerbated by reduced 
reimbursement for virtual versus F2F appointments 
[103]. These set-up costs, together with requirements 
for robust and secure telecommunication infrastructure, 
may particularly limit the adoption of the VC in develop-
ing nations, risking accentuation of the healthcare divide 
between the developed and developing world [104]. In 

addition, there are safety concerns associated with the 
VC pathway. There is the risk that patients attending the 
VC who require same-day intervention will have their 
treatment delayed due to asynchronous review of results, 
although appropriate implementation of a red flag path-
way during VC patient assessment may reduce this risk 
[99]. Diagnoses outside of the remit of the VC may be 
missed, although this is also possible in F2F clinics. The 
patient perspective is vitally important, and the potential 
loss of live doctor-patient interaction, a cornerstone of 
the doctor-patient relationship, may detrimentally affect 
VC care outcomes [105]. Further research on maintain-
ing safety, reducing costs, and ensuring patient accept-
ance of and satisfaction from the VC pathway should help 
improve its future uptake within the field of retina.

Teleophthalmology and the patient experience
High patient satisfaction with synchronous telemedi-
cine in ophthalmology, especially over the course of the 
COVID-19 pandemic, has been widely reported [106–
109]. Studies have also highlighted positive provider atti-
tudes towards teleophthalmology and its continued use 
[110–113]. This is unsurprising given the numerous ben-
efits of teleophthalmology to both patients and health-
care providers [114] (Table 2). Nonetheless, there remain 
several disadvantages and barriers to teleophthalmology 
faced by patients (Table  2). This might account for the 
hesitance among certain patient groups (e.g. older age, 
lower educational attainment, telehealth inexperience) 
towards its adoption [115].

Given the emerging and increasing popularity of vir-
tual clinics within secondary care for high-volume outpa-
tient ophthalmic subspecialties such as medical retina to 
address capacity issues [99, 127], there is a need to assess 
and define patient suitability (Table 3) for such services to 
enhance patient experience and maintain patient safety. 
Recent evidence from other subspecialties such as glau-
coma suggests that virtual clinics with expanded eligibil-
ity criteria can remain effective in delivering high-quality, 
safe care with high levels of patient satisfaction [128].

Several sociodemographic factors such as older age, 
Asian ethnicity and non-English speakers have been 
identified to be associated with lower rates of telemedi-
cine use [129]. At MEH, male gender, socioeconomic 
deprivation, previous appointment cancellation, and lack 
of self-reporting of ethnicity were found to be associ-
ated with non-attendance in synchronous audiovisual 
appointments [130]. Lack of resources, digital literacy 
and trust in the video consultation model have also been 
found to contribute to the “digital divide or exclusion” in 
teleophthalmology [131, 132], which risks compounding 
existing health disparities. Clear guidelines and strategies 
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are required to address and minimise such inequalities in 
access to enhance digital healthcare provision.

Teleophthalmology and the doctor experience
Provision of high quality and high volume telemedicine 
requires appropriate information technology (IT) infra-
structure which include high-speed internet connectiv-
ity, up-to-date imaging software and continuous access 
to technical support [133]. While there is usually a sig-
nificant amount of time and resources incurred with its 
initial implementation, adequate IT infrastructure invest-
ment has been shown to be more cost-effective in the 
long run from a global perspective [134, 135].

Interprofessional communication can be enhanced 
by teleophthalmology through rapid access to specialist 
advice from any location [117]. Various modes of con-
sultation currently exist (Table 4) and secure messaging 
apps (e.g. Pando, Slack, Induction Switch) allow users to 
connect with colleagues for expert advice and support, 

thus improving patient care. Efficient triage and decision 
can also be made by ophthalmologists following review of 
relevant patient history and retinal imaging via a cloud-
based referral platform. This has been shown to yield 
time-efficient primary care referrals and reduce unneces-
sary tertiary retinal referrals within hospital services [85].

A survey of UK oculoplastic surgeons in 2020 demon-
strated increased utility of and confidence in telemedi-
cine in routine clinical practice, and improved quality 
of telemedicine infrastructure, as a consequence of the 
COVID-19 pandemic. Improvement of patient flow from 
telemedicine adoption, with reduced time from referral 
to first clinic appointment, improved efficiency of service 
provision, and low recall from telemedicine consultations 
for face-to-face assessment, was noted by the major-
ity of respondents. Barriers to telemedicine integration 
highlighted by clinicians included difficult patient exami-
nation, limitation in rapport-building, lack of administra-
tive support and poor patient access to digital technology 
[113].

Home monitoring
Home monitoring via patient self-measurements has 
been shown to be a valuable adjunct of modern tel-
eophthalmology [142, 143]. In addition to reducing 
the need for clinical visits, it facilitates the collection 
of high quality data in a personal setting that can guide 
targeted management [143]. An example of a widely 
used, long-established method for this is the Amsler 
grid which helps to detect signs of visual deficits such as 
metamorphopsia in patients with macular diseases [144]. 

Table 2 Benefits and disadvantages/barriers of teleophthalmology for patients

Benefits Comment

Large outreach Overcomes geographical barriers to healthcare access [116, 117]

Timely evaluation and access 
to emergency intervention

Addresses coverage gap for emergency eye care and prevent delay in initiation of treatment [118]

Avoiding unnecessary referrals Proper triaging to select patients who require intervention [e.g. most patients referred for fundal examination 
by primary care did not require treatment [119]]

Saves cost, time and effort Teleophthalmology for screening of retinal diseases such as diabetic retinopathy has been shown to be cost-
effective [120]

Infection control and protection Minimises avoidable patient contact, especially for those at a high risk of communicable disease [121]

Comparable diagnostic accuracy Teleophthalmology consultations have high agreement with face-to-face consultations in the diagnosis of retinal 
conditions such as AMD [122]

Disadvantages/Barriers Comment

Unfamiliarity Patients may struggle to access telemedicine due to low digital literacy [123]

Poor image quality Media opacities (e.g. cataract or vitreous haemorrhage) or poor compliance can lead to inadequate and ungradable 
fundal images [124]

Privacy and security concerns Inadvertent transmission of non-clinical information or sharing of data with third-party advertisers may cause 
patients to lose trust [125]

Patient-doctor relationship Concerns exist about depersonalisation of the patient-doctor relationship due to a lack of physical interaction which 
might affect trust and communication [126]

Table 3 Patient factors determining suitability for virtual clinics

Factors Clinic type

Virtual Face-to-face

Risk of infectious disease (e.g. COVID-19) High Low

Digital proficiency High Low

Clinical urgency Low High

Risk of delaying clinical procedure / surgery Low High

Vulnerability Low High

Communication difficulties (e.g. dementia) No Yes
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Although such traditional methods may be useful in dis-
ease screening, it is not well suited for monitoring of dis-
ease progression given its imprecise and unquantifiable 
assessment of visual function [145].

In an attempt to address this gap, the recent years have 
seen the introduction of a myriad of digital home meas-
urement tests [146]. These include home-based and 
smartphones/tablets-based devices which have been 
shown to be cost-effective in specific patient cohorts 
[147]. An example of the former is the ForeseeHome 
(Notal Vision Inc., Manassas, VA, USA), a home-based 
digital hyperacuity testing device for patients with age-
related macular degeneration (AMD) that transmits data 
directly to an ophthalmologist [148]. The clinical utility 
of the ForeseeHome system was demonstrated by a ran-
domised controlled trial which had to be terminated ear-
lier due to its superior efficacy at an interim data analysis 
[148]. However, real-world evidence has since demon-
strated a significant proportion of false-positive alerts 
with this device [149]. Nonetheless, these alerts have 
been found to be highly predictive for future conversions 
in high-risk eyes that are fellow to eyes with neovascular 
AMD [150].

Miniaturisation of optical coherence tomography 
(OCT) imaging technology for home monitoring has also 
been of particular interest [151, 152]. An example of this 
is the Notal Vision Home OCT (NVHO, Notal Vision 
Inc.) system which has demonstrated feasibility in two 
recent prospective longitudinal studies [152, 153]. Using 
a validated artificial intelligence-based software that 
detects and quantifies retinal fluid on OCT [154, 155], 
automated analysis of self-acquired scans in patients 
with neovascular AMD achieved a high agreement with 
human grading. A large multicentre randomised clinical 
trial in which home OCT-guided treatment versus treat 
and extend for the management of neovascular AMD is 

currently being planned (DRCR.net Protocol AO: https:// 
public. jaeb. org/ drcrn et/ view/ Upcom eStud ies). Other 
available options of home-based OCT include the self-
examination low-cost full-field OCT (SELFF-OCT) cur-
rently patented and commercialised by Visotec (https:// 
visot ec. health/) [156, 157], and the sparse OCT (also 
known as MIMO-OCT) developed by a Swiss group 
[158].

Despite the promising role of home-based OCT, its 
high upfront hardware cost, coupled with the ever-
increasing incidence of degenerative macular pathology 
with an ageing population, is likely to limit its reach-
ability in the near future [146]. More readily available 
smartphones or tablets that can administer remote tests 
of visual function have a greater potential to maxim-
ise patient outreach. Examples of currently available 
mobile apps that implement novel tests include Alleye 
[159] and Home Vision Monitor (previously known as 
 myVisionTrack®) [160], both of which are FDA-cleared 
and Conformité Européenne (CE) marked. Alleye 
employs a monocular alignment hyperacuity task [159] 
whereas Home Vision Monitor utilises a shape discrimi-
nation hyperacuity test. Patient acceptability, validity 
and real-world utility of both apps have been examined 
by several studies with encouraging results to date [143, 
161–166].

Teleophthalmology to support rural and remote 
communities
Rural and remote communities, especially in large coun-
tries, often consist of small but widely dispersed popula-
tions and represent a major hurdle to healthcare access 
[167]. Teleophthalmology provides a unique oppor-
tunity to address this disparity by facilitating timely 
and wider access to healthcare. Although this has been 
implemented for various retinal conditions, diabetic 

Table 4 Various modes of teleconsultation

Mode Platform example Advantages Disadvantages

Video Attend anywhere [136, 137] • Closest to face-to-face consultation
• Offers important visual information
• Better patient rapport
• More reliable patient identification

• Requires more complex and expensive setup (i.e. 
high-quality webcam and internet connection)
• Vulnerable to privacy and security risks

Phone/Audio Digital enhanced cordless 
telecommunications (DECT) 
phones [138]

• Convenient and quick
• Cheaper given less IT infrastructure requirement
• Widely accessible

• No visual cue(s)
• May be difficult to establish patient rapport

Text-based Florence [139] • Convenient and quick
• Cheapest given minimal IT infrastructure require-
ment
• Widely accessible

• Communication is largely asynchronous
• No audio or visual cue(s)
• Difficult to establish patient rapport

Hybrid N/A—consists of alternat-
ing face-to-face and virtual 
consultations [140, 141]

• Screening/diagnostic tests, physical examination 
and treatments can be incorporated
• More efficient care pathways may be created

• More costly
• Gap in accessibility among those with digital 
literacy challenges

https://public.jaeb.org/drcrnet/view/UpcomeStudies
https://public.jaeb.org/drcrnet/view/UpcomeStudies
https://visotec.health/
https://visotec.health/
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retinopathy (DR) is the most targeted disease given that 
it remains the leading cause of preventable blindness in 
working-age adults worldwide [168]. There is also evi-
dence to suggest that rural populations are dispropor-
tionately affected by DR [169].

Several teleophthalmology programs for rural commu-
nities have been established across the globe [170–174]. 
However, the uptake and implantation of teleophthalmol-
ogy in remote services remain underwhelming despite its 
vast potential in promoting equity and accessibility to eye 
care. The reasons for this are multifactorial and revolve 
around the logistical challenges in coordinating outreach 
optometry and ophthalmology services as well as ensur-
ing availability of dedicated on-call specialists [116].

DL systems may present a unique solution to the bar-
riers faced by teleophthalmology in rural areas [175]. 
Effective triage and assessment of patients with retinal 
diseases via such systems can overcome the main hurdle 
of accessing an ophthalmologist in remote areas. With 
the continuous refinement of DL systems, AI-augmented 
teleophthalmology appears poised to make remote reti-
nal screening more automated, timely and cost-effective 
[176]. The implementation of 5G networks may even 
allow novel models of remote treatment delivery such as 
“telephotocoagulation” which involves creating image-
based and fluorescein angiogram-based treatment plans 
for remote navigated retinal photocoagulation [177].

Teleophthalmology and the COVID‑19 pandemic
The COVID-19 pandemic saw an exponential growth in 
teleophthalmology with the expansion of existing services 
due to the mandatory policies of self-isolation and social 
distancing to maintain patient and clinician safety. Given 
that the traditional face-to-face patient-physician model 
alone was no longer fit for purpose, rapid deployment of 
digital technology and new models of care became nec-
essary to meet the growing demand and expectations. 
Various digital health operational models have since been 
adopted, either independently or in combination, to facil-
itate new processes for clinical care [121].

Within ophthalmology, patients with stable retinal con-
ditions not requiring active intervention have been rec-
ommended to adopt remote care through virtual clinics 
[99, 178] and home monitoring [161], while vulnerable 
and high-risk patients continued to attend face-to-face 
visits. Furthermore, the goal of care had to be re-evalu-
ated for patients with specific retinal diseases. An exam-
ple of this is neovascular AMD, in which patients were 
recommended fixed-dosing and treat-and extend regimes 
of anti-VEGF injections to reduce the need for non-treat-
ment follow-up visits [179, 180]. This creates a situation 
where all face-to-face visits are for anti-VEGF treatment, 
thus obviating the need for traditional monitoring visits.

The provision of emergency ophthalmic care via tel-
eophthalmology has also been shown to be feasible and 
effective [136, 137]. An exemplar of this is the Moor-
fields virtual eye casualty service that was launched out 
of necessity during the COVID-19 pandemic [136]. This 
provided video consultations directly between patients 
and ophthalmologists, allowing drop-in access without a 
referral as well as effective triaging of patients (i.e. out-of-
hospital management of low-risk patients and selective 
signposting of high-risk patients to a less crowded A&E 
for traditional care). Overall, this novel service utilising 
videoconsultation was found to be acceptable by patients 
and had comparable patient safety to traditional in per-
son review [137].

Conclusion
The integration of telemedicine within ophthalmology 
and in particular the field of retina has already trans-
formed the way in which healthcare is delivered, both in 
the community and in the hospital setting. A myriad of 
factors including ever-increasing demand for services, 
improvements in global telecommunications infrastruc-
ture, increasing computing power and the advent of AI 
have made the approach increasingly viable, with the 
COVID-19 pandemic providing the catalyst for its wide-
spread acceptance and adoption across the globe.

With the exponential development and integration 
of technological innovations complementary to digital 
health such as deep learning and the ‘Internet of things’, 
it is reasonable to envisage a future where teleophthal-
mology will be at the forefront of eyecare transformation 
by facilitating automation of clinical decision making 
with a data-driven approach as well as personalised eye 
care through continuous personal data monitoring and 
analysis.

Given these ongoing developments, it does not seem 
far-fetched to think that we are at the beginning of a 
golden age of teleophthalmology. Nevertheless, much 
of the current body of evidence in the field is limited to 
specific domains such as population screening, and more 
work is needed in terms of robust randomised controlled 
trials and health economic analyses to broaden the appli-
cation, adoption, and acceptability of teleophthalmol-
ogy in a wider global context. Other key challenges at a 
higher organisational level include the lack of tools and 
capabilities by commissioning services to drive change 
as well as the lack of a leadership culture and organisa-
tional infrastructure to support this. Patient engagement 
in steering planning and satisfaction assessment from 
early deployment of teleophthalmology programmes also 
remains vital, and is especially pertinent in light of the 
growing importance of patient-led care.
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As we continue to witness a paradigm shift in how 
ophthalmic healthcare is delivered, it is vital that these 
challenges are addressed. Teleophthalmology systems 
must ultimately remain safe, validated, secure, and 
include measures to reduce digital exclusion and the 
exacerbation of existing health inequalities, both within 
nations and between the developed and developing 
world. With these safeguards in place, the present and 
future benefits of telemedicine to patients and physi-
cians are unparalleled.
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