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Abstract 

Background Automated identification of spectral domain optical coherence tomography (SD-OCT) features can 
improve retina clinic workflow efficiency as they are able to detect pathologic findings. The purpose of this study 
was to test a deep learning (DL)-based algorithm for the identification of Idiopathic Full Thickness Macular Hole 
(IFTMH) features and stages of severity in SD-OCT B-scans.

Methods In this cross-sectional study, subjects solely diagnosed with either IFTMH or Posterior Vitreous Detach-
ment (PVD) were identified excluding secondary causes of macular holes, any concurrent maculopathies, or incom-
plete records. SD-OCT scans (512 × 128) from all subjects were acquired with  CIRRUS™ HD-OCT (ZEISS, Dublin, CA) 
and reviewed for quality. In order to establish a ground truth classification, each SD-OCT B-scan was labeled by two 
trained graders and adjudicated by a retina specialist when applicable. Two test sets were built based on different 
gold-standard classification methods. The sensitivity, specificity and accuracy of the algorithm to identify IFTMH 
features in SD-OCT B-scans were determined. Spearman’s correlation was run to examine if the algorithm’s probability 
score was associated with the severity stages of IFTMH.

Results Six hundred and one SD-OCT cube scans from 601 subjects (299 with IFTMH and 302 with PVD) were used. 
A total of 76,928 individual SD-OCT B-scans were labeled gradable by the algorithm and yielded an accuracy of 88.5% 
(test set 1, 33,024 B-scans) and 91.4% (test set 2, 43,904 B-scans) in identifying SD-OCT features of IFTMHs. A Spear-
man’s correlation coefficient of 0.15 was achieved between the algorithm’s probability score and the stages of the 299 
(47 [15.7%] stage 2, 56 [18.7%] stage 3 and 196 [65.6%] stage 4) IFTMHs cubes studied.

Conclusions The DL-based algorithm was able to accurately detect IFTMHs features on individual SD-OCT B-scans 
in both test sets. However, there was a low correlation between the algorithm’s probability score and IFTMH sever-
ity stages. The algorithm may serve as a clinical decision support tool that assists with the identification of IFTMHs. 
Further training is necessary for the algorithm to identify stages of IFTMHs.
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Background
Idiopathic full thickness macular holes (IFTMH) are 
a neurosensory retina defect that occur primarily as a 
result of abnormalities at the vitreomacular interface 
(VMI). They have been documented to occur in individu-
als from all ages and backgrounds, although prior studies 
have found that IFTMH most commonly affect women 
in their sixth to seventh decade of life [1–3]. Early symp-
toms associated with IFTMH include blurriness and met-
amorphopsia, which can progress to central vision loss if 
left untreated. While some IFTMH close spontaneously, 
vitrectomy can resolve over 90% of cases that need sur-
gical treatment [4]. However, IFTMH may remain open 
even after surgery, and associated risk factors for this 
include older age, larger hole size (> 400 μm) and longer 
duration of IFTMH [5–7].

Spectral domain optical coherence tomography (SD-
OCT) is the current standard of care to assess IFTMHs 
as it allows detailed examination of the retina layers and 
the VMI. A classification of macular holes based on OCT 
findings has been largely applied to studies that investi-
gate IFTMH epidemiology, natural history and surgical 
prognosis [5, 6, 8–13]. Therefore, prompt identification 
of pathologic features of IFTMHs on SD-OCT images 
may optimize treatment and increase rates of successful 
hole repair and visual gains.

In recent years, the use of deep learning (DL) methods 
have been widely applied in ophthalmology to automate 
diagnosis of diseases such as age-related macular degen-
eration (AMD) and diabetic retinopathy (DR) [14–17]. 
A model capable of identifying IFTMHs features from 
routine clinical SD-OCTs would not only assist with the 
diagnostic process and decision making, but improve 
workflow in general and specialized clinics. Thus, the aim 
of this study is to assess the ability of a previously vali-
dated B-scans of Interest DL algorithm to detect patho-
logic features of IFTMH in SD-OCTs and classify the 
IFTMH in stages of severity [18–21].

Methods
This cross-sectional study was approved by the Cleveland 
Clinic Institutional Review Board and informed consent 
was waived due to its observational nature. It adhered to 
the tenets of the Declaration of Helsinki and was com-
pliant with FDA regulations and the Health Insurance 
Portability and Accountability Act. The study aimed to 
test the DL-based, Zeiss B-Scans of Interest algorithm for 
the detection of IFTMH features in SD-OCT B-scans, as 

well as investigate the correlation between its output and 
the severity stages of IFTMH. For this purpose, two test 
datasets consisting of both controls and cases were built. 
Eligible patients were aged ≥ 18  years old, diagnosed 
with posterior vitreous detachment (PVD) (controls) or 
IFTMH (cases), and seen at Cole Eye Institute from Janu-
ary 2012 to February 2021. SD-OCTs from one eye per 
patient were included.

B‑Scans of interest algorithm development
The B-Scans of Interest is a DL-based algorithm devel-
oped by Carl Zeiss Meditec, Inc. whose protocol has 
been described in detail in prior publications [18–21]. In 
brief, the algorithm was trained using 76,800 SD-OCT 
 CIRRUS™ 4000 and 5000 (ZEISS, Dublin, CA) B-scans 
obtained from multiple sites worldwide. The data set 
included images with signal strength higher than 7, with 
balanced gender distribution and randomly selected eyes. 
Both the training and the hold-out test sets consisted of 
normal scans as well as retinal pathologies, including dry 
and wet AMD, DR, diabetic macular edema (DME), reti-
nal vein occlusion (RVO), macular holes and epiretinal 
membrane (ERM). Each individual B-scan was labeled by 
two ophthalmologists using an online annotation tool for 
quality (gradable vs. ungradable based on factors such as 
blocked or blurred portion of the image area, being out 
of focus, and the presence of artifacts caused by the scan-
ning protocol according to grader’s discretion). Gradable 
scans were then labeled using the same online annotation 
tool for the presence of eight features: subretinal fluid 
(SRF), intraretinal fluid (IRF), retinal pigment epithelium 
(RPE) atrophy, RPE elevation, disruption of inner retinal 
layers, disruption of vitreoretinal interface (VRI), inner 
segment/outer segment disruption, and “other retinal 
clinical findings”. In case of disagreement between grad-
ers, the annotation was adjudicated by a US-licensed reti-
nal specialist. B-scans were considered “abnormal” if at 
least one of the graders had marked at least one of the 
above eight features. Otherwise, B-scans were considered 
“normal.”

The algorithm was developed in two parts, the first 
assessing quality and the second detecting abnormali-
ties in good-quality scans. The image quality assessment 
algorithm was first developed to identify B-scans with 
good or poor image quality in macular cube SD-OCT 
scans, and details can be found elsewhere [21]. Of these, 
B-scans with good image quality were used for training to 
automatically detect B-scans with abnormalities (i.e., any 
of the pathologies described above), which were called 
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“B-scans of Interest” (Fig. 1). A 3-channel ResNet-50 neu-
ral network modified by adding inverted drop-out fol-
lowed by softmax activation was the architecture used 
for training. The modified 3-channel ResNet-50 is pre-
trained on ImageNet images and was transfer trained 
with resized B-scans (224 × 224). The images were split 
into training (80%) and validation (20%) data sets at the 
subject level. Data augmentation was applied with rota-
tion, horizontal flip, and vertical shift. A fivefold cross-
validation model was then trained.

The algorithm provides a probability score between 0 
and 1 of each individual B-scan, which classifies a B-scan 
as abnormal when the threshold of 0.414963 is surpassed. 
The primary output of the algorithm is a binary classifica-
tion of normal vs abnormal B-scan (B-scans of interest). 
An excellent performance was achieved for the detection 
of B-scans of interest in both training and validation sets, 
with an average area under the receiving operator curve 
(AUC) of 0.9903 and 0.9843, respectively [21].

Selection of images for testing the B‑Scan of interest 
algorithm
The present study aimed to test the performance of the 
previously trained B-scan of Interest algorithm in detect-
ing pathologic features in IFTMH SD-OCT B-scans 
using a totally different dataset. Moreover, an explora-
tory analysis was conducted to investigate whether there 
would be any correlation between the probability scores 
provided by the model with the stages of severity of the 
IFTMH. The algorithm was not retrained, nor it was 
originally trained to predict the severity of any diseases.

An automated pull of patients diagnosed with PVD 
(International Classification of Diseases [ICD]-10 codes 
H43.811, H43.812, H43.813 and H43.819) and macular 
holes (ICD-10 codes H35.341, H35.342, H35.343 and 
H35.349) between January 2012 and March 2020 was 
conducted to select controls and cases, respectively. The 
automated pull for controls and cases retrieved a total of 

10,350 and 1450 patients, respectively. After removing 
duplicates and minors, 3537 and 1318 remained, respec-
tively. These were randomly ordered using the Microsoft 
Excel random number generator function to avoid selec-
tion bias. Then, a chart review using the electronic medi-
cal records (EMR) was conducted to screen for exclusion 
criteria and all available SD-OCT scans were reviewed to 
screen for quality and confounders, as only images with 
signal strength over 7, and only images with an exclu-
sive diagnosis of PVD (controls) or IFTMH (cases) were 
included. Secondary causes of macular holes, wrongly 
coded diseases and presence of concurrent pathologies 
that could confound results were all excluded. Whenever 
possible, the SD-OCT acquired at the first visit with the 
diagnosis was selected. It was necessary to screen 786 
controls to achieve 302 eligible patients, as it was the pre-
specified number for this study. After screening all 1318 
IFTMH patients, the sample size that matched with the 
size of controls was not obtained. A new automated pull 
with an extended period of time for searching (Janu-
ary 2012 to February 2021) was then conducted with 
the same macular hole ICD-10 codes and retrieved 774 
patients, 31 of which had not been included in the first 
pull. The same selection process was applied. The final 
validation dataset included 302 controls SD-OCT mac-
ular volume cubes (38,656 B-scans) and 299 cases SD-
OCT macular volume cubes (38,272 B-scans). Figure  2 
details the process for selection of images.

Annotation and image analysis for testing the B‑Scan 
of interest algorithm
All SD-OCT macular volume cube scans (512 × 128) 
were acquired using the  CIRRUS™ 4000 and 5000 
(ZEISS, Dublin, CA) at the Cole Eye Institute. The scans 
were uploaded to the online annotation tool after being 
deidentified.

To build the gold-standard classification, two inde-
pendent trained graders labeled each B-scan following 

Fig. 1 Deep learning (DL)-based algorithm for detecting image quality and identifying abnormal B-Scans of Interest. Algorithm identifies B-scans 
on the infrared fundus images with poor image quality (yellow) and B-scans of interest (red)
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the same process as described for the algorithm devel-
opment, namely presence of SRF, IRF, RPE atrophy, RPE 
elevation, disruption of inner retinal layers, disruption of 
VRI, inner segment/outer segment disruption, and “other 
retinal clinical findings” [21]. Labeling discrepancies were 
adjudicated by a retina specialist. A different, trained 
grader classified each IFTMH in severity stages accord-
ing to the International Vitreomacular Traction Study 
Group [8]. The stage classification was performed on the 
macular cube level using the Cirrus Review software.

The dataset was randomly split in two to test differ-
ent approaches for detecting B-scans of Interest. The 
first one considered a B-scan to be abnormal if at least 
one grader annotated at least one pathologic feature (test 
set 1), which was the method adopted for the B-Scan of 
Interest algorithm development [21]. The second consid-
ered a B-scan to be abnormal if both graders agreed on 
the feature annotated (or after adjudication, when appli-
cable) (test set 2), which is a more rigorous approach 
and less prone to human error. Microsoft Excel random 
number generator was used to split the data 1:1. The first 
half became part of test set 1, and the remaining images 
became part of test set 2.

Statistical analysis
Sensitivity, specificity, accuracy and AUC were uti-
lized as quantitative metrics to evaluate the perfor-
mance of the B-scans of Interest algorithm in detection 
of IFTMH pathologic features. Among the features 

annotated, the detected ones were disruption of inner 
retinal layers, disruption of VRI and inner segment/
outer segment disruption.

Spearman’s correlation was performed between the 
probability scores provided by the algorithm and sever-
ity stages of IFTMH. The probability scores are pro-
vided for each individual B-scan analyzed by the model, 
and therefore a compound of scores were analyzed to 
predict the severity stage of IFTH on the cube level.

Results
Test sets 1 and 2 consisted of 258 cubes (33,024 
B-scans) and 343 cubes (43,904 B-scans), respectively. 
Overall, the study cohort consisted of 405 (67.4%) 
females, 574 (95.5%) non-Hispanics, with a mean (SD) 
age of 70.5 (8.0) years. The distribution of the IFTMH 
severity stages was 47 (15.7%) stage 2, 56 (18.7%) stage 
3 and 196 (65.6%) stage 4. Demographic characteristics 
are further described on Table 1.

The B-Scans of Interest algorithm achieved an aver-
age sensitivity, specificity, accuracy and AUC of 75.7%, 
94.8%, 88.5% and 0.9028 for test set 1 and 89.5%, 94.2%, 
91.4% and 0.9555 for test set 2, respectively (Fig. 3).

Spearman’s correlation ran on the 299 IFTMH cube 
scans yielded a coefficient of 0.15, suggesting a low cor-
relation between the algorithm’s probability score and 
the severity stage of the IFTMH.

10,350 Patients 
identified 

3,537 Patients

786 Patients reviewed in 
Electronic Medical 

Records

302 Patients (302 eyes) 
included in the validation 

dataset

6,813 Duplicates 
removed

0 Aged < 18 
removed

484 Exclusions removed
182 Concurrent advanced retinopathies
92 Concurrent ERM
67 Incomplete records or OCT signal strength < 7
34 Abnormal fovea / lamellar hole
32 High myopia
24 Long term use of hydroxychloroquine 
23 Other or multiple reasons
19 Structural abnormality (EZ/RPE/choroid)
10 Prior RD or vitreoretinal surgery
1 CSCR

Automated Search
ICD-10 H43.811, H43.812, 

H43.813 and H43.819
January 2012 to March 2020

1,450 Patients identified 

1,318 Patients reviewed 
in Electronic Medical 

Records

285 Patients (285 eyes) 
selected

119 Duplicates 
removed

13 Aged <18 
removed

1033 Exclusions removed
348 No current full-thickness MH
239 Concurrent ERM
171 Previous vitreoretinal surgery
74 Incomplete records or OCT signal strength < 7
58 High myopia
51 Other or multiple reasons
47 Concurrent advanced retinopathies
30 Trauma
10 Concurrent RD
3 Uveitis
2 CSCR

Automated Search
ICD-10 H35.341, 342, 343, 349

January 2012 to March 2020

1,331 Patients 

299 Patients (299 eyes) 
included in the 

validation dataset

774 Patients identified 

31 Patients reviewed in 
Electronic Medical 

Records

14 Patients (14 eyes) 
selected

743 Duplicates 
removed

0 Aged <18 
removed

17 Exclusions removed
13 Concurrent ERM
1 Advanced retinopathy
1 Uveitis
1 CSCR 
1 OCT signal strength < 7

31 Patients 

Automated Search
ICD-10 H35.341, 342, 343, 349
January 2012 to February 2021

Fig. 2 Selection of patients for control and case groups. Abbreviations: ICD-10, International Classification of Diseases 10th edition; MH macular 
hole, ERM Epiretinal membrane, OCT Optical coherence tomography, EZ Ellipsoid zone, RPE Retinal Pigment Epithelium, RD Retinal detachment, 
CSCR Central serous chorioretinopathy. Advanced retinopathy was defined as intermediate-stage or worse age-related macular degeneration, 
moderate-stage or worse diabetic retinopathy, glaucoma, retinal vein/artery occlusions and retinal dystrophies. High myopia was defined 
as the spherical equivalent of ≥ − 6.00 diopters or axial length of ≥ 26.5 mm. Structural abnormalities excluded were abnormal foveal contours, 
ellipsoid zone disruption, retinal pigment epithelium irregularity, or choroidal thickening
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Discussion
This study tested the performance of the DL-based, Zeiss 
B-Scans of Interest algorithm in automated identification 
of pathologic features of IFTMH in SD-OCT B-scans. 
The algorithm was tested using two datasets with differ-
ent gold-standard classification methods. A high sensi-
tivity (75.7% and 89.5% in test sets 1 and 2, respectively), 
specificity (94.8% and 94.2%), accuracy (88.5% and 91.4%) 
and AUC (90.2% and 95.5%) for detection of abnormal 
B-scans were achieved.

Timely diagnosis is crucial for better surgical progno-
sis in IFTMH cases. In busy, non-retinal specialized clin-
ics, automated detection of possible IFTMH cases would 
speed triage and identify patients needing urgent care. 
This could improve vision outcomes, reduce medical 
costs and is particularly relevant in regions where oph-
thalmologists are not largely available. Recently, several 
AI-based methods of automated identification of IFTMH 

in fundus images and SD-OCTs have been described 
[22–26]. Differently from previous work, the B-Scans 
of Interest algorithm was developed to identify various 
prespecified retinal pathologic attributes in SD-OCT 
B-scans and characterize the individual scan as abnormal 
whenever any of the following is recognized: SRF, IRF, 
RPE atrophy, RPE elevation, disruption of inner retinal 
layers, disruption of VRI, or inner segment/outer seg-
ment disruption.

The B-Scans of Interest algorithm detects abnormali-
ties on the B-scan level, which translates the algorithm’s 
screening applicability. In the clinical setting, if at least 
one B-scan of a macular cube is flagged as abnormal, 
there would be an opportunity for the whole cube to be 
reviewed by an expert, increasing the chance of subtle 
disease to be identified. However, this could lead to an 
unnecessary demand for review of macular cubes with 
very few abnormal B-scans with artifacts or clinically 
insignificant disease.

This study observed a low correlation of 0.15 between 
the algorithm’s probability score and the severity stage 
of the IFTMH on SD-OCT scans. The stages are related 
to size and presence of vitreomacular traction [8]. Gen-
erally speaking, the more severe the disease, or the 
more remarkable features it presents, the easier identi-
fication should be. In this study, one could expect that 
larger IFTMHs and presence of traction would translate 
in easier detection of disruption of retinal layers and 
VRI, respectively, which was not noticed. It is possible 
that the algorithm is so adept at picking up abnormali-
ties that it over attributed abnormal scores to otherwise 
minor disruptions. Nonetheless, the B-Scans of Interest 
algorithm has not been specifically trained to identify 
severity stages of IFTMH or of any other diseases, and 

Table 1 Demographic characteristics of the validation dataset

IFTMH Idiopathic full-thickness macular holes, SD Standard deviation

Overall IFTMH (n = 299) Controls (n = 302)

Age, Mean (SD) 70.5 (8.0) 69.4 (7.1) 71.7 (8.61)

Gender, No. (%)

 Female 405 (67.4) 207 (69.2) 198 (65.6)

 Male 196 (32.6) 92 (30.8) 104 (34.4)

Ethnicity, No. (%)

 Non-Hispanic 574 (95.5) 285 (95.3) 289 (95.7)

 Hispanic 11 (1.8) 5 (1.7) 6 (2.0)

 Missing 16 (2.7) 9 (3.0) 7 (2.3)

Eye laterality, No. (%)

 Right eye 310 (51.6) 153 (51.2) 157 (52.0)

 Left eye 291 (48.4) 146 (48.8) 145 (48.0)

Fig. 3 Receiving operating curves (ROC). A Test set 1, AUC 0.9028. B Test set 2, AUC 0.9555
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therefore the interpretation of the correlation results 
should be cautious. Further training may be required to 
improve this outcome.

Strengths of this study include the robust number 
of images used in each test dataset and the high accu-
racy of the algorithm achieved in test sets with differ-
ent gold-standard classification methods. The IFTMH 
dataset was curated by trained personnel to exclude 
images with confounding pathologic features. Besides, 
the use of real-world SD-OCT images corroborates 
the results’ general applicability. One limitation of this 
study is the inclusion of exclusively idiopathic, full 
thickness cases of macular holes, excluding images with 
concurrent pathologies that would be seen in clini-
cal practice, which limits the evaluation of the algo-
rithm’s generalizability and applicability. The inclusion 
of images from just one OCT device, from one medi-
cal institution, and the cross-sectional nature of this 
study further limits generalizability. Another limitation 
is the algorithm’s primary output of normal vs abnor-
mal B-scan only, which means the provider still needs 
to interpret the scans on B-scan and cube level in order 
to diagnose and make a decision regarding referral and 
treatment. Retraining the algorithm to include a more 
granular output (ie, pathologic feature, retinal disease, 
severity of disease) would be clinically valuable.

In conclusion, the DL-based, B-Scans of Interest algo-
rithm can potentially serve as a clinical decision sup-
port tool that assists with the identification of IFTMHs. 
Next steps include further training of the algorithm to 
identify severity stages of IFTMHs. Future considera-
tions include larger scale validation and formal review 
of the safety, efficacy, and reliability of the algorithm in 
a variety of clinical settings before implementation in 
clinical practice.
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