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Abstract 

Background:  Optical coherence tomography angiography (OCTA) is a non-invasive tool for imaging and quantify-
ing the retinal and choroidal vasculature as well as perfusion state in healthy eyes. Choroidal perfusion is subject to 
diurnal variation, showing lowest perfusion in the morning and highest in the afternoon. In this index study, OCTA 
was used to investigate diurnal changes of the retinal perfusion in healthy adult eyes and to identify impacting factors 
since retinal perfusion is known to be mainly determined by autoregulatory mechanisms.

Methods:  A prospective study was conducted on healthy volunteers, each of whom underwent repeated measure-
ments of mean arterial pressure (MAP), intraocular pressure (IOP), macular volume (MV), subfoveal choroidal thick-
ness (SFCT), foveal avascular zone (FAZ) and retinal perfusion of the superficial capillary plexus (SCP), deep capillary 
plexus (DCP) and full retina (FR) slab at 7 a.m. and 4 p.m. Possible influence of MAP or IOP on the retinal perfusion was 
evaluated.

Results:  A total of 22 eyes of 22 participants (mean age 55.91 ± 14.84) were analysed. Significant diurnal changes 
from 7 a.m. to 4 p.m. were observed for MAP (p < 0.001) and SFCT (p = 0.017). The perfusion of SCP, DCP and FR as 
well as the size of the FAZ and the MV did not show significant fluctuation during the day. No significant correlation 
between MAP or IOP and retinal perfusion values were detectable.

Conclusion:  OCTA-based analysis of the retina in healthy adults demonstrated a steady perfusion of both plexus 
during the day, independently of changes in MAP. These findings support the theory of autoregulatory mechanisms 
of the retinal blood flow.
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Introduction
The microvascular network of the macula is affected in 
many diseases such as retinal vascular occlusion and dia-
betic retinopathy. The capillary density and the foveal 
avascular zone (FAZ) play an important role in central 

vision and are good indicators for the progression of 
retinal diseases such as the above mentioned [1–3]. 
Information on changes in the macular capillary plexus 
is also important for a better understanding of macular 
diseases, its pathogenesis and prognosis. During the last 
50  years, fundus fluorescein angiography (FA) has been 
the most popular tool to evaluate the retinal capillary 
perfusion and to obtain FAZ measurements. However, 
FA requires intravenous administration of contrast agent 
with possible adverse reactions [4]. Hence, follow-up 
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examinations to monitor and compare capillary perfu-
sion and FAZ over time are difficult to obtain. With the 
recent development of OCTA the retinal vascular net-
work can be assessed in vivo and in real time by creating 
slab-segmented angiograms [5].

Diurnal variations have previously been shown for 
intraocular pressure (IOP), axial length (AL) and sub-
foveal choroidal thickness (SFCT) [6, 7]. Recently, we 
demonstrated significant diurnal patterns in choroidal 
sublayer perfusion in healthy adults and eyes with epireti-
nal membrane in OCTA-based studies [8, 9]. Analyzation 
of choroidal sublayer perfusion in healthy adults showed 
significant diurnal variation in Sattler’s and Haller’s layer 
perfusion. The lowest perfusion state was observed in the 
morning, the highest in the afternoon. Since the choroi-
dal circulation is mainly controlled by autonomic inner-
vation and retinal blood flow is mainly determined by 
autoregulatory mechanisms and local factors, we aimed 
to evaluate diurnal variations of retinal perfusion and the 
size of the FAZ using OCTA [10, 11].

Methods
Participants for this prospective observational study 
were recruited from the Department of Ophthalmol-
ogy at the University of Lübeck. The study was approved 
by the institutional review board and was conducted in 
accordance with the Declaration of Helsinki. All subjects 
received detailed information about the study and writ-
ten informed consent was obtained individually by each 
participant before enrolment. Any history of ocular or 
cardiovascular disease, antihypertensive drug use, as 
well as diabetes mellitus was defined as exclusion crite-
ria. Ethnically all participants were Caucasian and they 
underwent a thorough examination including blood pres-
sure (BP), refraction, best-corrected visual acuity (BCVA) 
in Snellen, IOP, AL, slit-lamp biomicroscopy, macular 
SD-OCT as well as OCTA. The maximum permissible 
spherical and cylindrical aberration was ± 3 and ± 1 diop-
ters, respectively.

Imaging was performed on all subjects without prior 
pupil dilatation using the HS-100 (Canon, Tokyo, Japan) 
OCT/OCTA device at 7 a.m. and 4 p.m. by a single, 
trained operator. Each imaging session included OCT 
(10 × 10 mm2) and OCTA (3 × 3 mm2) volumetric scans 
of the posterior pole. The devices’ follow-up mode was 
used to assure measurements at the same location for 
both time points. The HS-100 device works with a modi-
fied full-spectrum amplitude decorrelation algorithm 
to generate flow maps. Only OCTA scans with a signal 
strength ≥ 7, centered on the fovea, and the absence of 
motion as well as segmentation and projection artifacts 
were considered [12, 13].

Macular volume (MV) was acquired for both time 
points according to the Early Treatment Diabetic Retin-
opathy Study (ETDRS) grid, which contains three con-
centric rings of diameters 1, 3 and 6 mm around the fovea 
and two reticules to divide the macula into nine sections 
[14]. SFCT was measured manually just below the fovea, 
extending perpendicularly from hyperreflective Bruch’s 
membrane to the inner scleral border.

After acquisition, OCTA images were automatically 
segmented in all B-Scans according to the manufac-
turer’s default setting to produce en face images of the 
superficial capillary plexus (SCP), deep capillary plexus 
(DCP) as well as a full retina (FR) slab (Fig. 1). The FAZ 
area (mm2) was manually measured in the FR slab by two 
experienced graders (F.R. and M.Ro.) and the mean value 
was used for statistical analysis.

Each en face image was exported into ImageJ (NIH, 
Version 1.48b, Bethesda, USA) and binarized by the Otsu 
method, which is an automatic threshold selection from 
grey-level histograms, to determine the percentage of 
white and black pixels [15]. Retinal perfusion was calcu-
lated by scoring the percentage of white pixels in relation 
to number of total pixels, according to published proto-
cols [8, 9, 16].

Statistical analyses were performed using IBM SPSS 
(Version 24.0, Chicago, IL, USA) and Prism GraphPad 
(Version 8.0, La Jolla, CA, USA). BCVA measurements in 
decimal Snellen were converted to logarithm of the mini-
mum angle of resolution (logMAR). Mean arterial pres-
sure (MAP) was calculated based on systolic and diastolic 
BP (2/3 diastolic BP + 1/3 systolic BP). The Shapiro–Wilk 
test was used to check for normality of all obtained data. 
Diurnal changes in MAP, IOP, MV, SFCT, FAZ, SCP-, 
DCP- and FR-Perfusion were evaluated using Wilcoxon 
signed-rank test. The influence of changes in MAP, IOP 
and MV on macular perfusion was analyzed by Spear-
man’s correlation analysis. Inter-rater agreement between 
the two graders measuring the FAZ area was evaluated 
using concordance correlation coefficient (CCC) along 
with its 95% confidence interval (CI).

Results
A total of 22 eyes of 22 healthy participants were 
recruited and included in the analysis. Demographic 
and clinical data are reported in Table  1. Laterality was 
assigned by chance, leading to 10 right eyes and 12 left 
eyes.

Table 2 outlines the diurnal variations of the collected 
data. MAP showed significant diurnal changes, increasing 
from the morning (94.09 ± 5.01 mmHg) to the afternoon 
(99.91 ± 7.44  mmHg) measurement (p < 0.001). SFCT 
revealed statistically significant changes during the course 
of the day as well, by dropping from 337 ± 79.46  µm to 
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318.18 ± 74.57  µm (p = 0.017). IOP stayed steady from 
7 a.m. (14.7 ± 3.0  mmHg) to 4 p.m. (14.5 ± 3.0  mmHg, 
p = 0.61). Likewise, MV did not show any significant fluc-
tuation (8.61 ± 0.33 mm3 vs. 8.64 ± 0.33 mm3, p = 0.283). 

Inter-rater CCCs of FAZ area measurements were 0.995 
(95% CI 0.988 to 0.998) at 7 a.m and 0.996 (95% CI 0.991 
to 0.999) at 4 p.m., respectively. The mean measured size 
of the FAZ was 0.339 ± 0.119  mm2 in the morning and 
0.336 ± 0.114 mm2 in the afternoon and didn’t show any 
statistically significant difference (p = 0.514).

Perfusion measurements of the retina slabs didn’t reveal 
any significant diurnal fluctuations either (Fig.  2). Both, 
SCP- and DCP perfusion, showed a slight but not signifi-
cant increase from 7 a.m. to 4 p.m. Perfusion in SCP went 
from 29.16 ± 3.86% in the morning to 30.89 ± 5.99% in 
the afternoon (p = 0.189) while DCP perfusion went from 
40.43 ± 3.93% to 40.98 ± 3.99% (p = 0.661). Accordingly, 
perfusion of the FR slab did not show significant diurnal 
variation between 7 a.m. and 4 p.m. (33.46 ± 4.67% vs. 
35.08 ± 5.83%, p = 0.223).

Further analysis did not reveal any significant corre-
lation between diurnal changes of MAP and perfusion 
changes of SCP (r = − 0.32; p = 0.142), DCP (r = 0.04; 
p = 0.873) or FR (r = − 0.15; p = 0.497). Likewise, changes 
of IOP during the day did not significantly influence the 
perfusion of SCP (r = 0.13; p = 0.564), DCP (r = − 0.14; 
p = 0.528) or FR (r = − 0.02; p = 0.923).

Discussion
To the best of our knowledge, this study is the first to 
evaluate diurnal changes in retinal perfusion by OCTA 
in healthy adults. Neither the perfusion in FR nor in SCP 
and DCP showed significant diurnal patterns between 
7 a.m. and 4 p.m. However, our results of a significant 
decrease in SFCT during the day are consistent with pre-
vious studies regarding diurnal changes in SFCT [7, 18]. 
Although MAP significantly increased from morning to 
afternoon, the retinal perfusion stayed steady during the 

Fig. 1  OCTA-Imaging of the posterior pole of a healthy adult. Angiogram and corresponding B-scan of the full retina (a), the superficial capillary 
plexus (b) and the deep capillary plexus (c)

Table 1  Demographic and clinical data

F female, M male, SD standard deviation, BCVA best-corrected visual acuity

Parameter Mean ± SD Median (min; max)

Age (years) 55.91 ± 14.84 59.5 (28; 76)

Sex (F/M) 12 (54.5%)/10 (45.5%)

Axial length (mm) 23.83 ± 1.38 24.11 (21.83; 26.63)

BCVA (logMAR) 0.04 ± 0.05 0.00 (0.00; 0.10)

Table 2  Diurnal changes in  mean arterial pressure (MAP), 
intraocular pressure (IOP), macular volume (MV), foveal 
avascular zone (FAZ), superficial capillary plexus perfusion 
(SCP-P), deep capillary plexus perfusion (DCP-P), full-
retina perfusion (FR-P), and subfoveal choroidal thickness 
(SFCT) are shown

Test values of p < 0.05 were considered statistically significant

Parameter 7 a.m. 
(Mean ± SD)

4 p.m. 
(Mean ± SD)

Wilcoxon 
signed-rank 
(p-value)

MAP (mmHg) 94.09 ± 5.01 99.91 ± 7.44 < 0.001

IOP (mmHg) 14.7 ± 3.0 14.5 ± 3.0 0.610

MV (mm3) 8.61 ± 0.33 8.64 ± 0.33 0.283

FAZ (mm2) 0.339 ± 0.119 0.336 ± 0.114 0.514

SCP-P (%) 29.16 ± 3.86 30.89 ± 5.99 0.189

DCP-P (%) 40.43 ± 3.93 40.98 ± 3.99 0.661

FR-P (%) 33.46 ± 4.67 35.08 ± 5.83 0.223

SFCT (µm) 337 ± 79.46 318.18 ± 74.57 0.017
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day. These results differ from findings of diurnal varia-
tion in choroidal perfusion. The healthy choroid, in par-
ticular Sattler’s and Haller’s layer, is known to be subject 
to diurnal variation [8, 17, 18]. Our recent OCTA-based 
study demonstrated a quadratic relation of the perfusion 
in both sublayers to time of the day, with the lowest per-
fusion state at 7 a.m. and the highest at 4 p.m. [8]. Several 
studies demonstrated the dependence of choroidal blood 
flow on MAP and even IOP due to poor autoregulation 
[8, 19, 20]. The present study indicates the independence 
of the retinal blood flow on changes of systemic blood 
pressure due to autoregulatory mechanisms. While cho-
roidal blood flow underlays diurnal variation, retinal 
blood flow seems to stay steady during the day. Previ-
ous studies using laser Doppler velocimetry have already 
demonstrated, that changes in systemic perfusion pres-
sure have only a negligible influence on retinal blood 
flow [10, 11, 21, 22]. The responsible mechanism for the 
insensitivity to systemic changes in perfusion pressure 
within the retinal circulation seems to be the absence of 
neuronal innervation in retinal vascular beds in contrast 
to the choroid. While histological studies have revealed a 
rich supply of autonomic vasoactive innervation for the 
choroid, the nerves do not go further into the retina [23, 
24]. Therefore retinal blood flow is mainly under autoreg-
ulation by both myogenic and local metabolic mecha-
nisms [25, 26]. The exact mechanisms are still unclear 
and focus of research. This study supports the theory of 
a steady retinal blood flow due to autoregulation in con-
trast to the choroidal blood flow with a diurnal pattern.

In contrast to our data, Müller et  al. showed diurnal 
fluctuation of the macular flow density in the DCP in 
primary open-angle glaucoma (POAG) patients with a 
slight increase during the day [27]. The perfusion in SCP 
did not change significantly, consistent with our findings. 
Interestingly, they found a positive correlation between 
the flow density in SCP and MAP. These results indicate 

that patients with POAG may have reduced autoregu-
latory capacity of the retinal vascular network. This 
hypothesis is supported by the study of Evans et al. who 
compared the changes in retrobulbar ocular blood flow 
in POAG patients with healthy controls during supine 
and upright posture [28]. They conclude that glaucoma 
patients exhibit vascular autoregulatory abnormalities in 
the vessels distal to the central retinal artery.

Our study demonstrates a constant size of the FAZ 
during the course of the day, which is an important find-
ing for studies dealing with FAZ measurements. OCTA 
has been reported as sensitive regarding alterations of the 
FAZ size and shape, which deals as an important parame-
ter of retinal capillary integrity [3, 29, 30]. This biomarker 
might even have prognostic significance as enlargement 
of the FAZ, which has been found in ischemic diseases 
such as retinal vein occlusion or diabetic retinopathy, is 
associated with poor visual outcome [3, 31]. Since the 
size of the FAZ in healthy adults seems to stay steady 
during the day, it is not important to account for time of 
the day when comparing longitudinal OCTA data. Our 
mean measured FAZ size of 0.339 ± 0.119 mm2 at 7 a.m. 
and 0.336 ± 0.114 mm2 at 4 p.m. are comparable to pre-
viously published data [5, 32–34]. Furthermore, inter-
rater agreement of the two graders measuring the FAZ 
dimensions was very high with CCCs of 0.995 at 7 a.m. 
and 0.996 at 4 p.m., respectively. These results indicate 
optimal inter-rater repeatability for manual FAZ meas-
urements in 3 × 3  mm2 OCTA scans and they are con-
sistent with previous reported high CCCs [35, 36]. OCT 
scans of the macula did not show significant changes 
in MV between 7 a.m. and 4 p.m. in our healthy study 
population. Several studies reported diurnal variations 
in macular thickness or MV in macular disease patients 
such as retinal vein occlusions and diabetic retinopathy 
[37–39]. The proposed mechanisms include the effect of 
gravity and hydrostatic pressure, nocturnal hypotension 

Fig. 2  Boxplot analysis of the retinal sublayer perfusion and subfoveal choroidal thickness in healthy adults at 7 a.m. and 4 p.m. The perfusion 
in SCP (a) and DCP (b), as well as the full retinal perfusion (c) didn’t show statistically significant changes between 7 a.m. and 4 p.m., while SFCT 
significantly decreased. Test values of p < 0.05 were considered statistically significant
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and changes in retinal metabolism. There are only limited 
studies in literature dealing with diurnal changes of MV 
in healthy adults. Ashraf and Nowroozzadeh examined 
MV in SD-OCT for three different time points [40]. They 
found a slight diurnal variation for the nasal and inferior 
ETDRS subfield with a greater MV at 7 a.m. than at 7 
p.m. However, as in our study, they did not detect diur-
nal changes in total MV of healthy retinas. Jo et al. didn’t 
detect any significant diurnal variation in MV either by 
measuring at two different time points using SD-OCT 
[41]. In conclusion, the intact blood-retinal barrier, in 
contrast to macular diseases with an edema, may resist 
diurnal hydrostatic changes which lead to a steady MV.

The present study has some limitations. As we only 
examined participants at 7 a.m. and 4 p.m., we may have 
missed out on important information of the retinal per-
fusion at other times. The scanned area of 3 × 3 mm2 only 
represents a small, but very important part of the retina. 
A wider range of examination area may provide higher 
meaningfulness. Furthermore, the manual measurement 
of the FAZ size may represent a potential bias. To reduce 
this possible confounding factor, all measurements were 
performed in a masked fashion by two experienced grad-
ers and the average values were used for statistical analy-
sis. In addition, our methodical approach is restricted by 
using a single OCTA device since perfusion values differ 
from device to device, depending on hardware, segmen-
tation and software algorithms. Finally, the sample size 
represents a potential limiting factor leading to a mainly 
exploratory data analysis. To corroborate our findings, 
further studies with a larger number of participants will 
be necessary.

Conclusion
In conclusion, OCTA is becoming an important non-
invasive tool for imaging and quantifying the retinal vas-
culature and perfusion state. The present study is the first 
to evaluate diurnal changes in retinal perfusion by using 
OCTA in healthy adults. The full retinal perfusion, as well 
as the sublayer perfusion in SCP and DCP stayed steady 
during the course of the day although MAP showed sig-
nificant fluctuations. These findings support the theory 
of autoregulatory mechanisms and local metabolites to 
control the retinal blood flow, independently of changes 
in systemic BP.
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