Skip to main content
Fig. 2 | International Journal of Retina and Vitreous

Fig. 2

From: Multimodal imaging in a patient with Prader–Willi syndrome

Fig. 2

Multimodal imaging of left eye. a Color fundus photography. Normal fundus pigmentation. There are similar hypertensive and diabetic changes to the right eye. There is a subfoveal disciform scar surrounded by an area of pigmentary disturbance occupying almost the entire macula. b Green fundus autofluorescence. The fovea shows a central zone of decreased FAF surrounded by a ring of increased FAF, which is surrounded by an area of decreased FAF. This triple zone corresponds to the disciform scar and surrounding areas of RPE disturbance and atrophy. The triple zone is surrounded by a larger area of mildly increased FAF occupying almost the entire macula, corresponding to diseased RPE and suggestive of prior presence of subretinal fluid. c Fluorescein angiography, mid arteriovenous phase. Microaneurysms appear as hyperfluorescent dots. There is a hyperfluorescent lesion at the fovea that shows intense staining, but not leakage, consistent with scar tissue. The lesion is surrounded by a hypofluorescent rim due to blockage by pigment, which is surrounded by a large area of mild hyperfluorescence representing a window defect. d SD-OCT (horizontal scan). There is subretinal hyperreflective material, part of which occupies almost the entire thickness of the foveal region. There are tiny cysts present mainly in the inner nuclear layer and 1 cyst in the ganglion cell layer. e En-face OCTA slabs of superficial capillary plexus, deep capillary plexus, outer retina and choriocapillaris (from left to right). There is a large type 2 macular neovascular complex originating deep in the choroid and extending into the innermost retinal layers. The lesion is noted mainly on the outer retina and choriocapillaris slabs, and the top part of the lesion appears as a small neovascular tuft on the SCP and DCP slabs. f B-scan structural OCT with angiographic overlay shows flow signals (red) within the subretinal hyperreflective material consistent with type 2 neovascularization

Back to article page