Open Access

Evaluation of retinectomy in the treatment of severe proliferative vitreoretinopathy

  • Thaís Sousa Mendes1Email author,
  • André Marcelo Vieira Gomes1, 2,
  • Bruno Saraiva Rocha1,
  • Hélcio Valério Passos Junior1 and
  • Suel Abujamra1, 2
International Journal of Retina and Vitreous20151:17

https://doi.org/10.1186/s40942-015-0018-3

Received: 27 March 2015

Accepted: 7 September 2015

Published: 8 October 2015

Abstract

Background

To evaluate the postoperative results and efficacy of retinectomy in the treatment of severe proliferative vitreoretinopathy (PVR).

Methods

The study involved 38 individuals with rhegmatogenous retinal detachment initially diagnosed with PVR grade C3 who had undergone pars plana vitrectomy combined with scleral buckle and silicone oil as a tamponade. A standard three-port pars plana vitrectomy was performed, and the extension of performing a retinectomy was decided during the procedure. The patients were followed for a minimum of 6 months after the last surgical procedure. Reoperation, postoperative hypotony and final reattachment rates were evaluated. Statistical analysis was performed with an Exact Fisher’s test.

Results

The mean preoperative visual acuity was >1.3 logMAR. The postoperative visual acuity improved and ranged from 1.3 to 0.7 logMAR (p < 0.63). The preoperative intraocular pressure was 10.2 mmHg and postoperatively was 11.6 mmHg. Postoperative hypotony was observed in 15.8 % of the cases. The reoperation rate after the first procedure was 63.2 %. A total of 44.7 % of the patients needed a retinectomy greater than 270° for a final anatomical success. The final retinal reattachment rate was 94.7 %.

Conclusions

Retinectomy can be an effective surgical procedure in the treatment of severe PVR, and it may increase the final reattachment rate.

Keywords

Retinal detachment Retinectomy Severe proliferative vitreoretinopathy

Background

Proliferative vitreoretinopathy (PVR) is the most common cause of failure in the management of rhegmatogenous retinal detachment (RRD). PVR occurs in 5–10 % of retinal detachment (RD) surgeries, and it comprises glial and retinal pigment epithelium cells that migrate and generate membranes usually on the lower retina as a result of gravity. Contraction of these membranes can cause new retinal tears, macular pucker, recurrent RD and hypotony. PVR categories are grades A, B, and C1–C5 [13].

The rate of anatomic success in RRD surgery can reach 80–90 % due to current advanced surgical techniques, especially in cases of RD involving mild PVR (grades A–C1). However, in cases of severe PVR (grades C2–C5), the prognosis is significantly poorer, considering anatomical and visual outcomes [14].

In the past, there has been controversy regarding the use of silicone oil versus gas as a tamponade in cases of RD associated with severe PVR. The Silicone Study (1992) concluded that perfluoropropane (C3F8) or silicone oil is more effective than SF6 in the treatment of PVR cases [5]. The use of pharmacological agents as adjuvant therapy in RD surgery has been described. Studies have described the use of daunomycin, 5-fluorouacil and heparin as adjuvant therapy. However, these studies reported that these drugs failed to improve final anatomic results [2, 6, 7].

In 1979, Machemer first described retinectomy as a treatment for complex RRD. Since that study, many authors have reported relaxing retinectomy as a valuable technique in the surgical management of severe PVR to achieve a high rate of anatomical success. Additionally, recent studies have suggested silicone oil as a superior tamponade compared to gas in eyes with PVR [4, 8].

Our study aimed to evaluate the efficacy of retinectomy in the surgical treatment of RRD associated with severe PVR and its effect on the reoperation rate and final retinal reattachment.

Methods

A retrospective study was conducted in 38 eyes of 38 patients with RRD initially diagnosed with PVR grade C3 who had undergone pars plana vitrectomy (PPV) combined with scleral buckle and silicone oil as a tamponade from June 2006 to June 2010. The study excluded eyes with previous vitrectomy for RRD, non-RRD and trauma.

The surgical technique included 360° peritomy, scleral buckle, and three-port incision (scleretomies) combined with a 23-gauge vitrectomy, which was performed by one experienced retinal surgeon (AG). Retinectomy extension was performed according to the surgeon’s decision at the time of surgery based on retinal shortening (180°, 270° or 360°). For all cases, 5000 centistokes silicone oil was used as a tamponade and a scleral buckle was not placed if a 360° shortening was made necessary during vitrectomy.

The postoperative follow-up was performed at 1 day, 1 week, 15, 30, 60, 90 and 6 months after the last surgical procedure was performed. Postoperative hypotony was defined as intraocular pressure ranging from 0 to 5 mmHg. Patients who did not complete 6 months of follow-up were excluded. Silicone oil was removed after a minimum of 3 months in patients with no signs of recurrent PVR or persistent RD.

A Fisher’s test was used to verify the association between the rate of reoperation and retinectomy performed. The postoperative average best-corrected visual acuity (BCVA) was analyzed with a MannWhitney test because of non-measurable values in LogMAR. A p value <0.05 was considered statistically significant.

Results

Patients were 62.9 ± 15.3 years of age and 52.5 % were male. Regarding lens status, 78.9 % of patients were phakic, 15.8 % were pseudophakic and 5.3 % were aphakic. The average preoperative IOP was 10.2 ± 4.1 mmHg and postoperative IOP was 11.6 ± 3.8 mm Hg.

The average preoperative BCVA was greater than 1.3 LogMAR (<20/400 Snellen Equivalent). All eyes achieved improvement to a final BCVA ranging from 1.3 to 0.7 LogMAR. Postoperative hypotony was determined in 15.8 % of the patients. Only one eye developed neovascular glaucoma (Table 1).
Table 1

Patient demographics, retinectomy extension and postoperative complications

 

N

Percentage (%)

Age

62.9 (±15.3)

 

Gender

 Female

20

52.5

 Male

18

47.5

Lens status

 Phakic

30

78.9

 Pseudophakic

6

15.8

 Aphakic

2

5.3

IOP (mmHg)

 Preoperative

10.2 (±4.1)

 

 Postoperative

11.6 (±3.8)

 

Retinectomy extension

 

 180°

21

55.3

 270°

7

18.4

 360°

10

26.3

Neovascular glaucoma

1

2.6

Postoperative hypotony

6

15.8

After the first procedure, 63.2 % of eyes needed a second surgery, including enlargement of the retinectomy from 180° to 270° (n = 11) or from 270° to 360° (n = 1), silicone oil removal (n = 10) and standard intraocular lens fixation (n = 2). A total of four eyes needed a third surgical procedure, including enlargement of the retinectomy from 270° to 360°. A final reattachment was observed in 94.7 % of the patients. Regarding extension of the retinectomy, 44.7 % eyes underwent retinectomy greater than 270° after the first surgery (Table 1).

There was an association between retinectomy extension and postoperative visual acuity. A total of 87 % (n = 33) of the eyes had better or stabilized postoperative VA compared to preoperative VA. Regarding hypotony, there was no association between the hypotony rate and retinectomy extension (Tables 2, 3, 4). No patients needed a scleral buckle removal.
Table 2

Preoperative and postoperative best-corrected visual acuity

BCVA

LogMAR

Snellen

Preoperative

Postoperative

  

N

Percentage (%)

N

Percentage (%)

0.7

20/100

0

0

10

26.3

1

20/200

3

7.9

11

28.9

1.3

20/400

2

5.3

0

0

>1.3–1.6

<20/400–5/400

2

5.3

6

15.8

1.6

5/400

26

68.4

3

7.9

>1.6

<5/400

5

13.2

8

21.1

Table 3

Final best corrected visual acuity and retinectomy extension

 

Retinectomy extension

Total

360°

270°

180°

Change in BCVA

    

 Worsening

0

3

2

5

 Better or no change

10

4

19

33

Total

10

7

21

38

p value = 0.049

Table 4

Hypotony and retinectomy extension

 

Hypotony

Total

Yes

No

Retinectomy extension

 360°

1

9

10

 270°

3

4

7

 180°

2

19

21

Total

6

32

38

p value = 0.13

Discussion

Proliferative vitreoretinopathy remains the primary cause of unsuccessful RRD surgery. Relaxing retinectomies are mandatory when a complete relief of retinal traction is not possible, even after membrane removal. Previous studies reported recurrent RD after 180°–360° retinectomies from 17 to 48 %. Our study found a higher rate of recurrent RD; however, most of the studies excluded eyes with PVR greater than C2 [9, 10].

Patients with severe PVR C3 who undergo retinectomy are more likely to develop postoperative PVR because of retinal pigment epithelium exposure, proliferation and migration of inflammatory cells on the retinal surface [2, 3]. In our study, all patients were classified as PVR greater than C2. This finding may explain the higher reoperation rate after the first procedure. However, the final reattachment rate of 94.7 % was greater than reports in the literature for severe PVR cases [8, 9, 11].

Postoperative hypotony is a common complication after large retinectomy and previous studies have reported a 15–40 % rate in eyes that underwent a 360° retinectomy [1013]. Additionally, Teke et al. [9] reported 1.7 % phthisical eyes. We report a 15.8 % postoperative hypotony rate, but no patients developed phthisis bulbi in our study. This finding may be explained by our choice of silicone oil as a tamponade. Several authors believe that silicone oil may prevent hypotony and phthisis after vitrectomy [1012, 14].

Our study has several limitations. This research is a retrospective study with a small number of patients. Additionally, we did not compare our patients with a control group in which retinectomy was not performed during the first surgical procedure. However, to the best of our knowledge, there are few studies in the literature evaluating the efficacy of retinectomy in eyes with PVR grade C3. Most studies have included PVR grade C1–C2 only [8, 9, 11]. A total of 44.7 % of the patients needed a retinectomy greater than 270° since the first surgery; nevertheless, most of them had an improved or stabilized final vision compared to preoperative VA. In the literature, only a small number of patients achieved ambulatory vision after a large retinectomy [10, 11].

Conclusions

Proliferative vitreoretinopathy is still a major cause of failure of RRD surgery, and occasionally, multiple procedures are required when reattachment is not obtained [2, 3, 15]. Retinectomy may result in a higher anatomical success rate for severe PVR cases by relaxing the shortened retina and may not be related to worse results concerning final visual acuity or hypotony.

Declarations

Authors’ contributions

TSM participated in the study design, data collection and analyses and drafted the manuscript. AMVG participated in the study design and coordination of the study. BSR participated in data collection and statistical analysis. HVPJ participated in data collection. SA participated in study coordination. All authors read and approved the final manuscript.

Compliance with ethical guidelines

Competing interests The authors declare that they have no competing interests.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Ophthalmology, Suel Abujamra Institute
(2)
Department of Ophthalmology, University of Sao Paulo

References

  1. Machemer R, McCuen B. An updated classification of retinal detachment with proliferative vitreoretinopathy. Am J Ophthalmol. 1991;112:159–65.View ArticlePubMedGoogle Scholar
  2. Charteris DG, Sethi CS, Lewis GP, Fisher SK. Proliferative vitreoretinopathy—developments in adjunctive treatment and retinal pathology. Eye. 2002;16:369–74.View ArticlePubMedGoogle Scholar
  3. Furino C, Micelli FT, Boscia F, Cardascia N, Recchimurzo N, Sborgia C. Triamcinolone—assisted pars plana vitrectomy for proliferative vitreoretinopathy. Retina. 2003;23:771–6.View ArticlePubMedGoogle Scholar
  4. Tsui I, Schubert HD. Retinotomy and silicone oil for detachments complicated by anterior inferior proliferative vitreoretinopathy. Br J Ophthalmol. 2009;93:1228–33.View ArticlePubMedGoogle Scholar
  5. Abrams GW, Azen SP, McCuen BW 2nd, Flynn HW Jr, Lai MY, Ryan SJ. Vitrectomy with silicone oil or long-acting gas in eyes with severe proliferative vitreoretinopathy: results of additional and long-term follow-up. Silicone Study report 11. Arch Ophthalmol. 1997;115:335–44.View ArticlePubMedGoogle Scholar
  6. Asaria RH, Kon CH, Bunce C, Charteris DG, Wong D, Khaw PT, et al. Adjuvant 5—fluorouracil and heparin prevents proliferative vitreoretinopathy: results from a randomized, double-blind, controlled clinical trial. Ophthalmology. 2001;108:1179–83.View ArticlePubMedGoogle Scholar
  7. Wiedemann P, Hilgers RD, Bauer P, Heimann K. Adjunctive daunorubicin in treatment of proliferative vitreoretinopathy: results of a multicenter clinical trial. Daunomycin Study Group. Am J Ophthalmol. 1998;126:550–9.View ArticlePubMedGoogle Scholar
  8. Teke MY, Balikoglu-Yilmaz M, Yuksekkaya P, Citirik M, Elgin U, Kose T, et al. Surgical outcomes and incidence of retinal redetachment in cases with complicated retinal detachment after silicone oil removal: univariate and multiple risk factors analysis. Retina (Philadelphia, Pa). 2014;34:1926–38.View ArticleGoogle Scholar
  9. Sato T, Emi K, Bando H, Ikeda T. Retrospective comparison of 25-gauge vitrectomy for repair of proliferative vitreoretinopathy with or without anterior proliferation. Graefes Arch Clin Exp Ophthalmol. 2014;252(12):1895–902.View ArticlePubMedGoogle Scholar
  10. Kolomeyer AM, Grigorian RA, Mostafavi D, Bhagat N, Zarbin MA. 360° retinectomy for the treatment of complex retinal detachment. Retina (Philadelphia, Pa). 2011;31:266–74.View ArticleGoogle Scholar
  11. Garnier S, Rahmi A, Grasswil C, Kodjikian L. Three hundred and sixty degree retinotomy for retinal detachments with severe proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol. 2013;251:2081–5.View ArticlePubMedGoogle Scholar
  12. de Silva DJ, Kwan A, Bunce C, Bainbridge J. Predicting visual outcome following retinectomy for retinal detachment. Br J Ophthalmol. 2008;92:954–8.View ArticlePubMedGoogle Scholar
  13. Zarbin MA, Michels RG, Green WR. Dissection of epiciliary tissue to treat chronic hypotony after surgery for retinal detachment with proliferative vitreoretinopathy. Retina. 1991;11(2):208–13.View ArticlePubMedGoogle Scholar
  14. Shalaby KA-G. Relaxing retinotomies and retinectomies in the management of retinal detachment with severe proliferative vitreoretinopathy (PVR). Clin Ophthalmol. 2010;4:1107–14.PubMed CentralView ArticlePubMedGoogle Scholar
  15. Enaida H, Hata Y, Ueni A, Nakamura T, Hisatomi T, Miyazaki M, et al. Possible benefits of triamcinolone—assisted pars plana vitrectomy for retinal diseases. Retina. 2003;23:764–70.View ArticlePubMedGoogle Scholar

Copyright

© Mendes et al. 2015

Advertisement