Hirsch J, Curcio CA. The spatial resolution capacity of human foveal retina. Vis Res. 1989;29:1095–101.
Article
CAS
PubMed
Google Scholar
Bone RA, Landrum JT, Friedes LM, et al. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res. 1997;64:211–8. doi:10.1006/exer.1996.0210.
Article
CAS
PubMed
Google Scholar
Landrum JT, Bone RA. Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys. 2001;385:28–40. doi:10.1006/abbi.2000.2171.
Article
CAS
PubMed
Google Scholar
Bone RA, Landrum JT. Distribution of macular pigment components, zeaxanthin and lutein, in human retina. Methods Enzymol. 1992;213:360–6.
Article
CAS
PubMed
Google Scholar
Snodderly DM, Auran JD, Delori FC. The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci. 1984;25:674–85.
CAS
PubMed
Google Scholar
Trieschmann M, van Kuijk FJGM, Alexander R, et al. Macular pigment in the human retina: histological evaluation of localization and distribution. Eye (Lond). 2008;22:132–7. doi:10.1038/sj.eye.6702780.
Article
CAS
Google Scholar
Snodderly DM, Brown PK, Delori FC, Auran JD. The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol Vis Sci. 1984;25:660–73.
CAS
PubMed
Google Scholar
Khachik F, Bernstein PS, Garland DL. Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci. 1997;38:1802–11.
CAS
PubMed
Google Scholar
Edge R, McGarvey DJ, Truscott TG. The carotenoids as anti-oxidants—a review. J Photochem Photobiol B Biol. 1997;41:189–200.
Article
CAS
Google Scholar
Nolan JM, Loughman J, Akkali MC, et al. The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. Vis Res. 2011;51:459–69. doi:10.1016/j.visres.2010.12.016.
Article
PubMed
Google Scholar
Stringham JM, Garcia PV, Smith PA, et al. Macular pigment and visual performance in glare: benefits for photostress recovery, disability glare, and visual discomfort. Invest Ophthalmol Vis Sci. 2011;52:7406–15. doi:10.1167/iovs.10-6699.
Article
PubMed
Google Scholar
Loughman J, Davison PA, Nolan JM, et al. Macular pigment and its contribution to visual performance and experience. J Optom. 2010;3:74–90. doi:10.1016/S1888-4296(10)70011-X.
Article
PubMed Central
Google Scholar
Beatty S, Koh H, Phil M, et al. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000;45:115–34.
Article
CAS
PubMed
Google Scholar
Ding X, Patel M, Chan C-C. Molecular pathology of age-related macular degeneration. Prog Retin Eye Res. 2009;28:1–18. doi:10.1016/j.preteyeres.2008.10.001.
Article
CAS
PubMed
Google Scholar
Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord. 2008;9:315–27. doi:10.1007/s11154-008-9090-4.
Article
CAS
PubMed
Google Scholar
Age-Related Eye Disease Study Research Group, SanGiovanni JP, Chew EY, et al. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol. 2007;125:1225–32. doi:10.1001/archopht.125.9.1225.
Article
Google Scholar
Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA J Am Med Assoc. 2013;309:2005–15. doi:10.1001/jama.2013.4997.
Article
CAS
Google Scholar
Bone RA, Landrum JT, Fernandez L, Tarsis SL. Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest Ophthalmol Vis Sci. 1988;29:843–9.
CAS
PubMed
Google Scholar
Bone RA, Landrum JT, Hime GW, et al. Stereochemistry of the human macular carotenoids. Invest Ophthalmol Vis Sci. 1993;34:2033–40.
CAS
PubMed
Google Scholar
Bone RA, Landrum JT, Cao Y, et al. Macular pigment response to a supplement containing meso-zeaxanthin, lutein and zeaxanthin. Nutr Metab (Lond). 2007;4:12. doi:10.1186/1743-7075-4-12.
Article
CAS
Google Scholar
Sabour-Pickett S, Beatty S, Connolly E, et al. Supplementation with three different macular carotenoid formulations in patients with early age-related macular degeneration. Retina (Philadelphia, PA). 2014;34:1757–66. doi:10.1097/IAE.0000000000000174.
Article
CAS
Google Scholar
Akuffo KO, Nolan JM, Howard AN, et al. Sustained supplementation and monitored response with differing carotenoid formulations in early age-related macular degeneration. Eye (Lond). 2015;29:902–12. doi:10.1038/eye.2015.64.
Article
CAS
Google Scholar
Britton G. Structure and properties of carotenoids in relation to function. FASEB J. 1995;9:1551–8.
CAS
PubMed
Google Scholar
Stahl W. Macular carotenoids: lutein and zeaxanthin. Dev Ophthalmol. 2005;38:70–88. doi:10.1159/000082768.
Article
CAS
PubMed
Google Scholar
Roberts JE, Dennison J. The photobiology of lutein and zeaxanthin in the eye. J Ophthalmol. 2015;2015:1–8. doi:10.1155/2015/687173.
Article
Google Scholar
Shete V, Quadro L. Mammalian metabolism of β-carotene: gaps in knowledge. Nutrients. 2013;5:4849–68. doi:10.3390/nu5124849.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nolan JM, Meagher K, Kashani S, Beatty S. What is meso-zeaxanthin, and where does it come from? Eye (Lond). 2013;27:899–905. doi:10.1038/eye.2013.98.
Article
CAS
Google Scholar
Pease PL, Adams AJ, Nuccio E. Optical density of human macular pigment. Vision Res. 1987;27:705–10.
Article
CAS
PubMed
Google Scholar
Bone RA, Landrum JT, Cains A. Optical density spectra of the macular pigment in vivo and in vitro. Vis Res. 1992;32:105–10.
Article
CAS
PubMed
Google Scholar
Sujak A, Gabrielska J, Grudziński W, et al. Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch Biochem Biophys. 1999;371:301–7. doi:10.1006/abbi.1999.1437.
Article
CAS
PubMed
Google Scholar
Junghans A, Sies H, Stahl W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Arch Biochem Biophys. 2001;391:160–4. doi:10.1006/abbi.2001.2411.
Article
CAS
PubMed
Google Scholar
Cantrell A, McGarvey DJ, Truscott TG, et al. Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch Biochem Biophys. 2003;412:47–54.
Article
CAS
PubMed
Google Scholar
Bhosale P, Bernstein PS. Synergistic effects of zeaxanthin and its binding protein in the prevention of lipid membrane oxidation. Biochim Biophys Acta. 2005;1740:116–21. doi:10.1016/j.bbadis.2005.02.002.
Article
CAS
PubMed
Google Scholar
Li B, Ahmed F, Bernstein PS. Studies on the singlet oxygen scavenging mechanism of human macular pigment. Arch Biochem Biophys. 2010;504:56–60. doi:10.1016/j.abb.2010.07.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim BP, Nagao A, Terao J, et al. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim Biophys Acta. 1992;1126:178–84.
Article
CAS
PubMed
Google Scholar
Nilsson SEG, Sundelin SP, Wihlmark U, Brunk UT. Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol. 2003;106:13–6.
Article
PubMed
Google Scholar
Stringham JM, Fuld K, Wenzel AJ. Spatial properties of photophobia. Invest Ophthalmol Vis Sci. 2004;45:3838–48. doi:10.1167/iovs.04-0038.
Article
PubMed
Google Scholar
Wenzel AJ, Fuld K, Stringham JM, Curran Celentano J. Macular pigment optical density and photophobia light threshold. Vis Res. 2006;46:4615–22. doi:10.1016/j.visres.2006.09.019.
Article
PubMed
Google Scholar
Stringham JM, Hammond BR. The glare hypothesis of macular pigment function. Optom Vis Sci. 2007;84:859–64. doi:10.1097/OPX.0b013e3181559c2b.
Article
PubMed
Google Scholar
Stringham JM, Garcia PV, Smith PA, et al. Macular pigment and visual performance in glare: benefits for photostress recovery, disability glare, and visual discomfort. Invest Ophthalmol Vis Sci. 2011;52:7406–15. doi:10.1167/iovs.10-6699.
Article
PubMed
Google Scholar
Hammond BR, Fletcher LM, Roos F, et al. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. Invest Ophthalmol Vis Sci. 2014;55:8583–9. doi:10.1167/iovs.14-15573.
Article
CAS
PubMed
Google Scholar
Nolan JM, Loughman J, Akkali MC, et al. The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. Vis Res. 2011;51:459–69. doi:10.1016/j.visres.2010.12.016.
Article
PubMed
Google Scholar
Hammond BR, Wooten BR. CFF thresholds: relation to macular pigment optical density. Ophthalmic Physiol Opt. 2005;25:315–9. doi:10.1111/j.1475-1313.2005.00271.x.
Article
PubMed
Google Scholar
Hammond BRJ, Wooten BR, Snodderly DM. Density of the human crystalline lens is related to the macular pigment carotenoids, lutein and zeaxanthin. Optom Vis Sci. 1997;74:499.
Article
PubMed
Google Scholar
Craft NE, Haitema TB, Garnett KM, et al. Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J Nutr Health Aging. 2004;8:156–62.
CAS
PubMed
Google Scholar
Carboni G, Forma G, Mutolo MG, et al. Cross-sectional correlations between macular pigment optical density (MPOD) and measures of macular function. Invest Ophthalmol Vis Sci. 2010;51:1293.
Google Scholar
Feeney J, Finucane C, Savva GM, et al. Low macular pigment optical density is associated with lower cognitive performance in a large, population-based sample of older adults. Neurobiol Aging. 2013;34:2449–56. doi:10.1016/j.neurobiolaging.2013.05.007.
Article
PubMed
Google Scholar
Johnson EJ, Mcdonald K, Caldarella SM, et al. Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr Neurosci. 2013;11:75–83. doi:10.1179/147683008X301450.
Article
CAS
Google Scholar
Renzi LM, Dengler MJ, Puente A, et al. Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol Aging. 2014;35:1695–9. doi:10.1016/j.neurobiolaging.2013.12.024.
Article
PubMed
Google Scholar
Bovier ER, Renzi LM, Hammond BR. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on neural processing speed and efficiency. PLoS ONE. 2014;9:e108178. doi:10.1371/journal.pone.0108178.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wooten BR, Hammond BR, Land RI, Snodderly DM. A practical method for measuring macular pigment optical density. Invest Ophthalmol Vis Sci. 1999;40:2481–9.
CAS
PubMed
Google Scholar
Robson AG, Moreland JD, Pauleikhoff D, et al. Macular pigment density and distribution: comparison of fundus autofluorescence with minimum motion photometry. Vis Res. 2003;43:1765–75.
Article
PubMed
Google Scholar
Delori FC, Goger DG, Hammond BR, et al. Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry. J Opt Soc Am A. 2001;18:1212–30.
Article
CAS
Google Scholar
Berendschot TTJM, Willemse-Assink JJM, Bastiaanse M, et al. Macular pigment and melanin in age-related maculopathy in a general population. Invest Ophthalmol Vis Sci. 2002;43:1928–32.
PubMed
Google Scholar
Elsner AE, Burns SA, Beausencourt E, Weiter JJ. Foveal cone photopigment distribution: small alterations associated with macular pigment distribution. Invest Ophthalmol Vis Sci. 1998;39:2394–404.
CAS
PubMed
Google Scholar
Bernstein PS, Zhao D-Y, Wintch SW, et al. Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology. 2002;109:1780–7.
Article
PubMed
PubMed Central
Google Scholar
Howells O, Eperjesi F, Bartlett H. Measuring macular pigment optical density in vivo: a review of techniques. Graefes Arch Clin Exp Ophthalmol. 2011;249:315–47. doi:10.1007/s00417-010-1577-5.
Article
PubMed
Google Scholar
Wüstemeyer H, Moessner A, Jahn C, Wolf S. Macular pigment density in healthy subjects quantified with a modified confocal scanning laser ophthalmoscope. Graefes Arch Clin Exp Ophthalmol. 2003;241:647–51. doi:10.1007/s00417-003-0730-9.
Article
PubMed
Google Scholar
Canovas R, Lima VC, Garcia P, et al. Comparison between macular pigment optical density measurements using two-wavelength autofluorescence and heterochromatic flicker photometry techniques. Invest Ophthalmol Vis Sci. 2010;51:3152–6. doi:10.1167/iovs.09-3608.
Article
PubMed
Google Scholar
Lima VC, Rosen RB, Prata TS, et al. Association of age and macular pigment optical density using dual-wavelength autofluorescence imaging. Clin Ophthalmol. 2013;7:685–90. doi:10.2147/OPTH.S42549.
Article
PubMed
PubMed Central
Google Scholar
Dennison J, Stack J, Beatty S, Nolan J. Concordance of macular pigment measurements using heterochromatic flicker photometry, autofluorescence, and reflectometry. Invest Ophthalmol Vis Sci. 2013;54:3776.
Google Scholar
Ding X, Patel M, Chan C-C. Molecular pathology of age-related macular degeneration. Prog Retin Eye Res. 2009;28:1–18. doi:10.1016/j.preteyeres.2008.10.001.
Article
CAS
PubMed
Google Scholar
Coleman HR, Chan C-C, Ferris FL, Chew EY. Age-related macular degeneration. Lancet. 2008;372:1835–45. doi:10.1016/S0140-6736(08)61759-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet. 2012;379:1728–38. doi:10.1016/S0140-6736(12)60282-7.
Article
PubMed
Google Scholar
Krinsky NI, Landrum JT, Bone RA. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr. 2003;23:171–201. doi:10.1146/annurev.nutr.23.011702.073307.
Article
CAS
PubMed
Google Scholar
Moeller SM, Parekh N, Tinker L, et al. Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the carotenoids in Age-related Eye Disease Study (CAREDS): ancillary study of the Women’s Health Initiative. Arch Ophthalmol. 2006;124:1151–62. doi:10.1001/archopht.124.8.1151.
Article
CAS
PubMed
Google Scholar
Tan JSL, Wang JJ, Flood V, et al. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology. 2008;115:334–41. doi:10.1016/j.ophtha.2007.03.083.
Article
PubMed
Google Scholar
Ma L, Dou H-L, Wu Y-Q, et al. Lutein and zeaxanthin intake and the risk of age-related macular degeneration: a systematic review and meta-analysis. Br J Nutr. 2012;107:350–9. doi:10.1017/S0007114511004260.
Article
CAS
PubMed
Google Scholar
Ho L, van Leeuwen R, Witteman JCM, et al. Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and ω-3 fatty acids: the Rotterdam study. Arch Ophthalmol. 2011;129:758–66. doi:10.1001/archophthalmol.2011.141.
Article
CAS
PubMed
Google Scholar
Bone RA, Landrum JT, Mayne ST, et al. Macular pigment in donor eyes with and without AMD: a case-control study. Invest Ophthalmol Vis Sci. 2001;42:235–40.
CAS
PubMed
Google Scholar
Nolan JM, Stack J, O’ Donovan O, et al. Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp Eye Res. 2007;84:61–74. doi:10.1016/j.exer.2006.08.016.
Article
CAS
PubMed
Google Scholar
Piermarocchi S, Saviano S, Parisi V, et al. Carotenoids in Age-related Maculopathy Italian Study (CARMIS): two-year results of a randomized study. Eur J Ophthalmol. 2012;22:216–25. doi:10.5301/ejo.5000069.
Article
PubMed
Google Scholar
Richer S, Stiles W, Statkute L, et al. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry. 2004;75:216–30.
Article
PubMed
Google Scholar
Rosenthal JM, Kim J, de Monasterio F, et al. Dose-ranging study of lutein supplementation in persons aged 60 years or older. Invest Ophthalmol Vis Sci. 2006;47:5227–33. doi:10.1167/iovs.05-1513.
Article
PubMed
Google Scholar
Liu R, Wang T, Zhang B, et al. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2015;56:252–8. doi:10.1167/iovs.14-15553.
Article
CAS
Google Scholar
Ma L, Yan S-F, Huang Y-M, et al. Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology. 2012;119:2290–7. doi:10.1016/j.ophtha.2012.06.014.
Article
PubMed
Google Scholar
Cangemi FE. TOZAL Study: an open case control study of an oral antioxidant and omega-3 supplement for dry AMD. BMC Ophthalmol. 2007;7:3. doi:10.1186/1471-2415-7-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Age-Related Eye Disease Study 2 (AREDS2) Research Group, Chew EY, Clemons TE, et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. JAMA Ophthalmol. 2014;132:142–9. doi:10.1001/jamaophthalmol.2013.7376.
Article
CAS
Google Scholar
Huang Y-M, Dou H-L, Huang F-F, et al. Changes following supplementation with lutein and zeaxanthin in retinal function in eyes with early age-related macular degeneration: a randomised, double-blind, placebo-controlled trial. Br J Ophthalmol. 2015;99:371–5. doi:10.1136/bjophthalmol-2014-305503.
Article
PubMed
Google Scholar
Thurnham DI, Nolan JM, Howard AN, Beatty S. Macular response to supplementation with differing xanthophyll formulations in subjects with and without age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2015;253:1231–43. doi:10.1007/s00417-014-2811-3.
Article
CAS
PubMed
Google Scholar
Gong X, Rubin LP. Role of macular xanthophylls in prevention of common neovascular retinopathies: retinopathy of prematurity and diabetic retinopathy. Arch Biochem Biophys. 2015;572:40–8. doi:10.1016/j.abb.2015.02.004.
Article
CAS
PubMed
Google Scholar
Cavallaro G, Filippi L, Bagnoli P, et al. The pathophysiology of retinopathy of prematurity: an update of previous and recent knowledge. Acta Ophthalmol. 2014;92:2–20. doi:10.1111/aos.12049.
Article
CAS
PubMed
Google Scholar
Hellström A, Smith LEH, Dammann O. Retinopathy of prematurity. Lancet. 2013;382:1445–57. doi:10.1016/S0140-6736(13)60178-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaur C, Sivakumar V, Foulds WS, et al. Cellular and vascular changes in the retina of neonatal rats after an acute exposure to hypoxia. Invest Ophthalmol Vis Sci. 2009;50:5364–74. doi:10.1167/iovs.09-3552.
Article
PubMed
Google Scholar
Niesman MR, Johnson KA, Penn JS. Therapeutic effect of liposomal superoxide dismutase in an animal model of retinopathy of prematurity. Neurochem Res. 1997;22:597–605.
Article
CAS
PubMed
Google Scholar
Penn JS, Tolman BL, Bullard LE. Effect of a water-soluble vitamin E analog, trolox C, on retinal vascular development in an animal model of retinopathy of prematurity. Free Radic Biol Med. 1997;22:977–84.
Article
CAS
PubMed
Google Scholar
Rosen R, Vagaggini T, Chen Y, Hu D-N. Zeaxanthin inhibits hypoxia-induced VEGF secretion by RPE cells through decreased protein levels of hypoxia-inducible factors-1α. Biomed Res Int. 2015;687386:11. doi:10.1155/2015/687386.
Google Scholar
Picone S, Ritieni A, Fabiano A, et al. Arterial cord blood lutein levels in preterm and term healthy newborns are sex and gestational age dependent. Clin Biochem. 2012;45:1558–63. doi:10.1016/j.clinbiochem.2012.07.109.
Article
CAS
PubMed
Google Scholar
Perrone S, Tei M, Longini M, et al. Lipid and protein oxidation in newborn infants after lutein administration. Oxid Med Cell Longev. 2014;2014:781454–7. doi:10.1155/2014/781454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dani C, Lori I, Favelli F, et al. Lutein and zeaxanthin supplementation in preterm infants to prevent retinopathy of prematurity: a randomized controlled study. J Matern Fetal Neonatal Med. 2012;25:523–7. doi:10.3109/14767058.2011.629252.
Article
CAS
PubMed
Google Scholar
Manzoni P, Guardione R, Bonetti P, et al. Lutein and zeaxanthin supplementation in preterm very low-birth-weight neonates in neonatal intensive care units: a multicenter randomized controlled trial. Am J Perinatol. 2013;30:25–32. doi:10.1055/s-0032-1321494.
PubMed
Google Scholar
Romagnoli C, Giannantonio C, Cota F, et al. A prospective, randomized, double blind study comparing lutein to placebo for reducing occurrence and severity of retinopathy of prematurity. J Matern Fetal Neonatal Med. 2011;24(Suppl 1):147–50. doi:10.3109/14767058.2011.607618.
Article
CAS
PubMed
Google Scholar
Rubin LP, Chan GM, Barrett-Reis BM, et al. Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants. J Perinatol. 2012;32:418–24. doi:10.1038/jp.2011.87.
Article
CAS
PubMed
Google Scholar
Kowluru RA, Chan P-S. Oxidative stress and diabetic retinopathy. Exp Diabetes Res. 2007;2007:43603. doi:10.1155/2007/43603.
PubMed
PubMed Central
Google Scholar
Kowluru RA, Menon B, Gierhart DL. Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats. Invest Ophthalmol Vis Sci. 2008;49:1645–51. doi:10.1167/iovs.07-0764.
Article
PubMed
Google Scholar
Kowluru RA, Zhong Q, Santos JM, et al. Beneficial effects of the nutritional supplements on the development of diabetic retinopathy. Nutr Metab (Lond). 2014;11:8. doi:10.1186/1743-7075-11-8.
Article
CAS
Google Scholar
Muriach M, Bosch-Morell F, Alexander G, et al. Lutein effect on retina and hippocampus of diabetic mice. Free Radic Biol Med. 2006;41:979–84. doi:10.1016/j.freeradbiomed.2006.06.023.
Article
CAS
PubMed
Google Scholar
Sasaki M, Ozawa Y, Kurihara T, et al. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia. 2010;53:971–9. doi:10.1007/s00125-009-1655-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brazionis L, Rowley K, Itsiopoulos C, O’Dea K. Plasma carotenoids and diabetic retinopathy. Br J Nutr. 2009;101:270–7. doi:10.1017/S0007114508006545.
Article
CAS
PubMed
Google Scholar
Lima VC, Rosen RB, Maia M, et al. Macular pigment optical density measured by dual-wavelength autofluorescence imaging in diabetic and nondiabetic patients: a comparative study. Invest Ophthalmol Vis Sci. 2010;51:5840–5. doi:10.1167/iovs.09-4695.
Article
PubMed
Google Scholar
Hu B-J, Hu Y-N, Lin S, et al. Application of lutein and zeaxanthin in nonproliferative diabetic retinopathy. Int J Ophthalmol. 2011;4:303–6. doi:10.3980/j.issn.2222-3959.2011.03.19.
PubMed
PubMed Central
Google Scholar